IMPORTANT QUESTION \& ANSWERS
UNIT -I
FLUID PROPERTIES AND FLOW CHARACTERISTICS
PART-B

1. A 15 cm diameter vertical cylinder rotates concentrically Inside another cylinder of diameter $15,10 \mathrm{~cm}$. Both cylinders are 25 cm high. The δ pace between the cylinders is filled with a liquid whose Viscosity is Unknown. If a torque of 12.0 Nm is required to rotate the Inner cylinder at coo r.p.m. determine the viscosity of the fluid. \& Given, Calculate the power?

Diameter of cylinder $=15 \mathrm{~cm}=0.15 \mathrm{~m}$
Dias. of outer cylinder $=15.10 \mathrm{~cm}=0.151 \mathrm{~m}$
length of cylinders, $L=25 \mathrm{~cm}=0.25 \mathrm{~m}$.
Torque $T=12 \mathrm{Nm}$.
speed $N=100$ r.p.m.
To Find :
Viscosity $\mu=? ;$ Power $(P)=$?
Formula:

$$
\mu=\tau / \frac{d u}{d y} \quad\left[\because \tau=\mu \cdot \frac{d u}{d y}\right]
$$

Solution:

$$
P=\frac{2 \pi N T}{60}
$$

(i) Tangential velocity of cylinder $u=\frac{\pi D N}{60}$

$$
u=\frac{\pi \times 0.15 \times 100}{60} \Rightarrow 0.7854 \mathrm{~m} / \mathrm{s}
$$

(i) Scoiface area of cylinder, $A=\pi D \times L$

$$
\begin{aligned}
A & =\pi \times 0.15 \times 0.25=0.1178 \\
d y & =\frac{0.151-0.15}{2}=0.0005 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Shear stress }(\bar{\tau}) & =u \cdot \frac{d u}{d y} \\
\tau & =\frac{\mu \times 0.7854}{0.0005}
\end{aligned}
$$

Shear force $=$ Shear Stress x Area. (A)

$$
(F)
$$

$$
\begin{aligned}
\text { Torque }(7) & =F \times D / 2 \\
12 & =F \times\left(\frac{0.15}{2}\right) \\
F & =\frac{12}{0.075} \Rightarrow 160 \mathrm{~N} . \\
F & =160 \mathrm{~N} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Shear } \\
& \text { Stress }(T)
\end{aligned} \begin{aligned}
& \frac{F}{A} \\
& =\frac{160}{0.1178} \Rightarrow 1388.23 . \\
\tau & =1358.23 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Viscosity }(\mu) & =\frac{\bar{\tau}}{\left(\frac{d u}{d y}\right)} \\
\tau & =1358.23 \mathrm{~N} / \mathrm{m}^{2} \\
\mu & =\frac{1358.23}{\left(\frac{0.7854}{0.0005}\right)} \Rightarrow 0.864 \mathrm{Ns} / \mathrm{m}^{2} . \\
\text { Viscosity } \mu & =0.864 \mathrm{Ns} / \mathrm{m}^{2} .(0 r 1) \\
& =0.864 \times 10 \Rightarrow 8.64 \mathrm{poise} . \\
\text { Power } C P) & =\frac{2 \pi \mathrm{NT}}{60} \\
& =\frac{2 \times \pi \times 100 \times 12}{60} \\
P & =125.66 \mathrm{~W}
\end{aligned}
$$

The velocity distribution over a plate is given by the relation, $u=y\left(\frac{2}{3}-y\right)$; where y is the vertical distance above the plate in meters. Assuming a
2. Viscosity of 0.9 Pass, find the shear stress at $y=0$ and $y=0.15 \mathrm{~m}$. [NOV-DeC-2012]

Given:
velocity $(u)=y(2 / 3-y)$ (or)
distribution

$$
\frac{2}{3} y-y^{2}
$$

$$
\begin{aligned}
& e=\frac{1}{10} \frac{\mathrm{Ns}}{\mathrm{~m}^{2}} \\
& \varepsilon=\frac{0.9}{10} \\
& \left.=0.09 \mathrm{Ns} / \mathrm{m}^{2}\right]
\end{aligned}
$$

To find :
Shear stress at a distance $y=0 ; y=0.15 \mathrm{~m}$

Formula required:

$$
\underset{\substack{\text { Shear } \\ \text { stress }}}{ }(\tau)_{\substack{y=0 ; \\ y=0.15 m}}=u \cdot \frac{d u}{d y}
$$

Solution:

$$
u=\frac{2}{8} y-y^{2} \cdot[\text { diff. w.r.t } y]
$$

we get,

$$
\frac{d u}{d y}=\frac{2}{3}-2 y
$$

At $y=0$;

$$
\begin{aligned}
& \frac{d u}{d y}=\frac{2}{3}-2(0) \\
& \frac{d u}{d y}=\frac{2}{3} / s
\end{aligned}
$$

$$
(\tau)=0.06 \mathrm{~N} / \mathrm{m}^{2}
$$

(i) Shear stress $(\tau)=u \cdot\left(\frac{d u}{d y}\right)\left(\frac{d u}{d y}\right)$

$$
=0.09 \times 2 / 3
$$

At $y=0.15$,

$$
\begin{aligned}
\frac{d u}{d y} & =\frac{2}{3}-2(0.15) \\
& =0.36 / \mathrm{s} \\
(\tau)_{y=0.15} & =0.09 \times 0.36 \\
& =0.033 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Result :
(i) Shear sires at $y=0=0.06 \mathrm{~N} / \mathrm{m}^{2}$.

$$
(\tau)_{y_{2} 0}
$$

(ii) Shear stress at $\left.\begin{array}{r}y=0.15 \mathrm{~m} \\ (2)_{y=0.15}\end{array}\right\}=0.033 \mathrm{~N} / \mathrm{m}^{2}$

3(a) Water flows at the rate of 200 litres per second upwards through a tapered vertical pipe. The diameter at the bottom is 240 mm and at the top 200 mm and the length is 5 m . The presser at the bottom is 8 bar, and the pressure at the topside is 7.3 bar. Determine the head loss through the pipe. Express it as a function of exit velocity head .s (10) [NOV 1 DEC - 2014] also the direction of flow.
Given:

$$
\begin{aligned}
& Q=200 \operatorname{lit} / \mathrm{s} \Rightarrow 0.2 \mathrm{~m}^{3} / \mathrm{s} . \\
& D_{1}=0.24 \mathrm{~m} . \\
& D_{2}=0.2 \mathrm{~m} . \\
& Z_{2}=5 \mathrm{~m} . \\
& P_{1}=8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \\
& P_{2}=7.3 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Find:
(i) Head Loss $\left(h_{L}\right)=$?
(i) Direction of flow : ?

Formula required :

$$
\frac{p_{1}}{P_{g}}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{P_{2}}{P_{g}}+\frac{v_{2}^{2}}{2 g}+z_{2}+h_{2}
$$

Solution:

$$
\begin{aligned}
\frac{p_{1}}{\rho_{g}}+\frac{v_{1}^{2}}{2 g}+z_{1} & =\frac{p_{Q}}{\rho_{g}}+\frac{v_{2}^{2}}{2 g}+z_{2}+h_{2} \\
\frac{8 \times 10^{5}}{\rho g}+\frac{v_{1}^{2}}{2 g}+0 & =\frac{7.3 \times 10^{5}}{\rho \times g}+\frac{v_{2}^{2}}{2 g}+5+h_{1}>(1)
\end{aligned}
$$

$$
\begin{aligned}
Q=A_{1} V_{1} & =A_{2} V_{2} . \\
& \left.=\frac{0.2}{\pi / 4(0.24)^{2}} \quad\left[\begin{array}{l}
A_{1} \\
V_{1}=Q / 4\left(A_{1}\right)^{2} \\
A_{2}
\end{array}\right] / 4 / 1_{2}\right)^{2} 1 \\
& =4.42 \mathrm{~m} / \mathrm{s} . \\
V_{2}=Q / A_{2} & =\frac{0.2}{\pi / 4(0.2)^{2}}=6.36 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Subset V_{1} s V_{2} Value on equation (1). we get,
$[\because P$ of crater 1000

$$
\begin{aligned}
\frac{8 \times 10^{5}}{1000 \times 9.81} & +\frac{(4.42)^{2}}{2 \times 9.81}+0=\frac{7.3 \times 10^{5}}{1000 \times 9.81}+(6.36)^{9} \cdot 9 \times 1.81 \\
81.5+0.995 & =74.4+2.06+51 h_{1} \\
82.495 & =81.46+h_{L} \\
h_{L} & =82.49 .5-81.46 \\
h_{L} & =1.035 \mathrm{~m}
\end{aligned}
$$

Express if a function of velocity haul.

$$
\begin{aligned}
h_{L} & =\frac{v_{2}^{2}}{29}-\frac{v_{1}^{2}}{2.1} \\
h_{L} & =\frac{(6.36)^{2}}{2 \times 9.81}-\frac{(4.42)^{2}}{2 \times 9.81} \\
& =2.06-0.99
\end{aligned}
$$

$$
\begin{aligned}
h_{L} & =\frac{(6.36)^{2}}{2 \times 9.81}-\frac{(4.42)^{2}}{2 \times 9.81} \\
& =2.06-0.99 \\
& =1.06 \mathrm{~m} \\
h_{L} & =1.06 \mathrm{~m}
\end{aligned}
$$

(ii) Direction of flow.

$$
\begin{array}{ll}
E_{A}=E_{B}+h_{L} \\
h_{L}=E_{A}-E_{B} & {\left[\because E_{A}=82.495\right.} \\
\left.E_{B}=81.46\right]
\end{array}
$$

As E_{A} is more than E_{B} and hence flow is taking Place from A to B.

Result :
(i) Loss of head $\left(h_{2}\right)=1.085 \mathrm{~m}$.
(ci) Direction of flow $=$ From A to B.

3(b) Determine the viscous drag torque \& power absorbed on one surface of a collar bearing of $0.2 \mathrm{~m} 2 D \& 0.3 \mathrm{~m}$ $O D$ with an oil film thickness of $1 \mathrm{~mm} \&$ a viscosity of 30 centipoise if it rotates at Soo.r.p.M. (6)
[NOV $/ D E C$ - 2014]

Given:

$$
\begin{aligned}
& D_{1}=0.2 \mathrm{~m} \\
& D_{0}=0.3 \mathrm{~m} \\
& d y=1 \mathrm{~mm} \\
& \mu=30 \mathrm{c} \cdot \mathrm{p}=0.03 \mathrm{Ns} / \mathrm{m}^{2} . \\
& N=500 \mathrm{r} . \mathrm{p} \cdot \mathrm{~m} .
\end{aligned}
$$

Find :
Drag Torque $(T)=$?
Formula:

$$
T=F \times D / 2 .
$$

Solution:
(i) Velocity $u=\frac{\pi d_{i} N}{60}$

$$
\begin{aligned}
& =\frac{\pi \times 0.2 \times 500}{60} \\
& =5.23 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

$$
d u=u-0 ; \quad d u=5.23 \mathrm{~m} / \mathrm{s} .
$$

(i)

$$
\begin{aligned}
s & =\mu \cdot \frac{d u}{d y} \\
& =0.03 \times \frac{5.23}{0.001 .} \\
\tau & =156.9 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned} \quad[\because \tau=F / A
$$

(ii)

$$
\left.\begin{array}{rl}
\text { Area of contact }(A) & =2 \pi \times r \times 1, \quad[\because 1= \\
& =2 \pi \times\binom{ 0.2}{2} \times 0.2 \\
0.05 & 0.08 \mathrm{~m}]
\end{array}\right]
$$

(iv)

$$
\begin{aligned}
\text { Force } & =\text { Shear Stress }(2) \times \text { Area }(A) \\
& =156.9 \times 0.0314 \\
F & =4.92 \mathrm{~N} .]
\end{aligned}
$$

(i) Drag Torque $(T)=F \times \frac{D_{i}}{2}$.

$$
=4.92 \times\left(\frac{0.2}{2}\right)
$$

Drag Torque $(T)=0.492 \mathrm{~N} . \mathrm{M}$.
Result ;

$$
\begin{aligned}
& \text { Velocity }(u)=5.28 \mathrm{~m} / \mathrm{s} \\
& \text { Shear fires }(\varepsilon)=156.9 \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { Area of contact }(A)=0.0314 \mathrm{~m}^{2} \\
& \text { Force }(F)=4.92 \mathrm{~N} \text {. }
\end{aligned}
$$

Drag Torque $(T)=0.492 \mathrm{~N} . \mathrm{m}$.
4. A Pipeline of 175 mm diameter branches into two types which delivers the water at atmospheric pressure. The diameter of branch 1 which is at 35° counter clockwise to the pipe anis is 75 mm \& velocity at outlet is $15 \mathrm{~m} / \mathrm{s}$. The branch 2 is at 15° with the pipe center lire in the Clockwise direction. has a diameter of 100 mm . The outlet Velocity is $15 \mathrm{~m} / \mathrm{s}$. The pipes. lie in a horizontal plane Determine the magnitude is direction of forces on the

Pipes. (16)
$[\mathrm{NOV} / \mathrm{DEC}-201 \mathrm{~J}]$.
Given:
Dias. of Main pipe $(d)=175 \mathrm{~mm}=0.175 \mathrm{~m}$.
Dial. of branch piper $\left(d_{1}\right)=75 \mathrm{~mm}=0.75 \mathrm{~m}$.
Velocity of branch pipe $1\left(V_{1}\right)=15 \mathrm{~m} / \mathrm{s}$.
Dial. of branch pipe $2\left(d_{2}\right)=100 \mathrm{~mm}=0.1 \mathrm{~m}$.
velocity of branch pipe $2\left(\mathrm{~V}_{2}\right)=15 \mathrm{~m} / \mathrm{s}$.
Find:
Determine magnitude \& direction of forces.
Formula:

$$
\begin{aligned}
F_{R} & =\sqrt{F_{x}^{2}+F_{y}^{2}} \\
\tan \theta & =\frac{F_{y}}{F_{x}}
\end{aligned}
$$

Solution:

By continuity equation.

$$
\begin{aligned}
Q & =Q_{1}+Q_{2} \\
A v & =A_{1} v_{1}+A_{2} v_{2} . \quad[\because Q=A \times v] \\
\frac{\pi}{4} d^{2} \times v & =\frac{\pi}{4} d_{1}^{2} \times v_{1}+\frac{\pi}{4} d_{2}^{2} \times v_{2} . \quad A=\pi / 4 d^{2} . \\
\frac{\pi}{4} \times 0.175^{2} \times v & =\frac{\pi}{4} \times 0.75^{2} \times 15+\frac{\pi}{4} \times 0.1^{2} \times 15 . \\
v & =7.65 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

By resolving forces in x. direction,

$$
F_{x}=F \cos \theta+F_{1} \cos \theta_{1}+F_{2} \cos \left(360-\theta_{2}\right) \rightarrow 0
$$

We know that,

$$
\begin{equation*}
\text { Fore e }=\text { Mass } \times \text { acceleration. } \tag{F}
\end{equation*}
$$

$$
\begin{equation*}
\text { Mass of coates }(M)=P A V \text {. } \tag{2}
\end{equation*}
$$

Subsuituting (2) in equ. (1)

$$
\begin{aligned}
F_{x} & =P_{A} V^{2} \cos \theta+P A_{1} Y_{1}{ }^{2} \cos \theta_{1}+\rho_{A_{2}} V_{2}{ }^{2} \cos \left(360-Q_{2}=\right. \\
& =1000 \times \frac{\pi}{4} \times(0.17 .5)^{2} \times 7.65 \cos \theta . \\
F_{x} & =1000 \times \frac{\pi}{4} \times 0.075^{2} \times 15 \cos 35^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& =1000 \times \frac{\pi}{4} \times 0.1^{2} \times 15 \cos \left(360-15^{\circ}\right) . \\
& F_{x}=352.08 \mathrm{~N} .
\end{aligned}
$$

By resolving force in y-direction.

$$
\begin{aligned}
& F_{y}=F \sin \theta+F_{1} \sin \theta_{1}+F_{2} \sin \left(360-\theta_{2}\right) . \\
& F_{y}=1000 \times \frac{\pi}{4} \times 0.075^{2} \times 15 \sin 35^{\circ}+1000 \times \frac{\pi}{4} \times 0.1^{2} \times \\
& F_{y}=7.52 \mathrm{sin}(360-15)^{\circ} \\
& F_{R}=\sqrt{\left(F_{x}\right)^{2}+\left(F_{4}\right)^{2}}=\sqrt{352.08^{2}+7.52^{2}} \\
& F_{R}=352.16 \mathrm{~N} .
\end{aligned}
$$

The direction of resultant force x. axis,

$$
\begin{aligned}
\tan \theta & =\frac{F_{y}}{F_{n}} \\
& =\frac{7.52}{352.08} \Rightarrow 0.0214
\end{aligned}
$$

Result:

$$
\begin{aligned}
& F_{R}=352.16 \mathrm{~N} . \\
& \tan \theta=0.0214 .
\end{aligned}
$$

5. A pipe 200 m long sloper down at 1 in 100 and tapers from 600 mm diameter at the lower end, and carrier coo lit $/ \mathrm{sec}$ of oil having specific gravity 0.8 . If the pressure gauge at the higher end reads $60 \mathrm{kN} / \mathrm{m}^{2}$. determine the velocities at the two end also the Pressure at the lowerend. Neglect all loses. (16)

$$
\left[A p_{\tau} / \text { may - } 2015\right]
$$

Given:

$$
L=200 \mathrm{~m} .
$$

slopes at $=1 / 100$.

$$
\begin{aligned}
& D_{1}=600 \mathrm{~mm} \\
& D_{2}=300 \mathrm{~mm} \\
& Q=100 \mathrm{lit} / \mathrm{sec}=0.1 \mathrm{~m}^{3} / \mathrm{s} . \\
& P_{1}=60 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2} . ; S=0.8 .
\end{aligned}
$$

Find :
pressure at the lower end $\left(p_{R}\right)=$?
formula required: Apply bernoullis equation.

$$
\frac{p_{1}}{\rho g}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho_{g}}+\frac{v_{2}^{2}}{2 g}+z_{2}
$$

Solution:
$z_{2}=0 \quad\left(b^{\prime} \cos\right.$ id located at Datum line)
$p_{1}=60 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$

$$
\begin{aligned}
Q= & A_{1} V_{1}=A_{2} V_{2} . \\
Q & =A_{1} V_{1} \\
0.1 & =\frac{\pi}{4}\left(d_{1}\right)^{2} \times V_{1} ; \frac{\pi}{4} \times(0.6)^{2} \times V_{1} \\
& V_{1}=\frac{0.1}{\frac{\pi}{4}(0.6)^{2}} \Rightarrow \frac{0.1}{0.2827} \Rightarrow 0.353 \mathrm{~m} / \mathrm{s} \\
Q & V_{1}=0.353 \mathrm{~m} / \mathrm{s} \\
Q & =A_{2} V_{2} \\
0.1 & \frac{\pi}{4}\left(d_{2}\right)^{2} \times V_{2}=\frac{\pi}{4} \times(0.3)^{2} \times V_{2} . \\
V_{2} & =\frac{0.1}{\frac{\pi}{4}(0.3)^{2}} \Rightarrow \frac{0.1}{0.0706} \Rightarrow 1.4164 \mathrm{~m} / \mathrm{s} . \\
& V_{2}=1.4164 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Apply bexnoullis equation,

$$
\begin{aligned}
& \frac{p_{1}}{\rho g}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho g}+\frac{v_{2}^{2}}{2 g}+z_{2} \\
& \frac{60 \times 10^{3}}{1000 \times 9.81}+\frac{(0.353)^{2}}{2 \times 9.81}+2=\frac{p_{2}}{\rho g}+\frac{(1.416)^{2}}{2 \times 9.81}+0
\end{aligned}
$$

$$
\begin{aligned}
& 6.116+\frac{0.1246}{19.62}+2=\frac{p_{2}}{\rho g}+\frac{2.005}{19.62}+0 \\
& 6.116+6.35 \times 10^{-3}+2=\frac{p_{2}}{\rho g}+0.102+0 \\
& 8.12=\frac{p_{2}}{\rho g}+0.102+0 \\
& \frac{p_{2}}{\rho g}=8.12-0.102 \\
& p_{2}=8.018 \times \rho \times g \\
&=8.018 \times 1000 \times 9.81 \\
&=78656.58 \mathrm{~N} / \mathrm{m}^{2}(0 \times 2) \\
&=78.65 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Result:

$$
\text { Prestruce at the lower end }\left(p_{2}\right)=78.65 \mathrm{kN} / \mathrm{m}^{2} \text {. }
$$

6. Derive the Bernoulli's equation from Euler's Equation. (Nov/Dec 2015)

This is equation of motion in which the forces due to gravity and pressure are taken into consideration. This is derived by considering the motion of a fluid element along a stream line as

1. Pressure force pdA in the direction of low
$\left.\begin{array}{l}\text { 2. Pressure force } \\ \left\{p^{6 p}\right.\end{array}{ }^{6 p} d s\right\} d A$ opposite to the direction of flow
2. Weight of element $\rho \mathrm{gdAds}$

Let θ is the angle between the direction of flow and the line of action of the weight of element.

The resultant force on the fluid element in the direction of s must be equal to the mass of fluid element X acceleration in the direction s .

$$
\begin{aligned}
& \mathrm{pdA}-\left\{\mathrm{pt}^{6} \frac{1}{6 s} d s\right\} \mathrm{dA}-\rho \operatorname{gdAds} \cos \theta \\
= & \rho \mathrm{dAds} \mathrm{X} \mathrm{a}_{\mathrm{s}}
\end{aligned}
$$

Whereas is the acceleration in the direction of s

$$
\begin{aligned}
\mathrm{a}_{\mathrm{s}} & =\frac{d v}{d t} \text { where } \mathrm{v} \text { is a function of } \mathrm{s} \text { and } \mathrm{t} . \\
& =\frac{6 v}{6 s} \frac{d s}{d t}+\frac{6 v}{6 t} \\
& =\mathrm{v} \frac{6 v}{6 s}+\frac{6 v}{6 t} \quad\left\{\mathrm{v}=\frac{d s}{d t}\right\}
\end{aligned}
$$

If the flow is steady, $\frac{d v}{d t}=0$

$$
a_{s}=v \frac{6 v}{6 s}
$$

Substituting the value of aj in equation 1 and simplifying the equation, we get

$$
\frac{-6 p}{6 s} d s-\rho \text { gdAds } \cos \theta=\rho \text { dAds } \times \frac{6 v}{6 s}
$$

Dividing by $\rho \mathrm{dAds}, \quad \frac{-6 p}{\rho 6 s}-\mathrm{g} \cos \theta=\mathrm{v} \frac{6 v}{6 s}$
$\frac{6 p}{\rho 6 s}+g \cos \theta+v \frac{6 v}{6 s}=0$
From fig $\cos \theta=\frac{d z}{d s}$

$$
\begin{aligned}
& \frac{1}{\rho} \frac{d p}{d s}+\mathrm{g} \frac{d z}{d s}+\mathrm{v} \frac{d v}{d s}=0 \\
& \frac{d p}{\rho}+\mathrm{g} d z+\mathrm{v} d v=0
\end{aligned}
$$

This equation is known as Euler's equation of motion

BERNOULLI' S EQUATION FROM EULER'S EQUATION

Bernoulli's equation is obtained by integrating the Euler's equation of motion

$$
\begin{aligned}
& \int \frac{d p}{\rho}+\int \mathrm{g} d z+\int \mathrm{v} d v=\text { constant }------------2 \\
& \frac{p}{\rho}+\mathrm{g} z+\frac{v^{2}}{2}=\text { constant } \\
& \frac{p}{\rho \mathrm{~g}}+z+\frac{v^{2}}{2 \mathrm{~g}}=\text { constant } \\
& \frac{p}{\rho \mathrm{~g}}=\text { pressure energy per unit weight of fluid pressure head } \\
& \frac{v^{2}}{2 \mathrm{~g}}=\text { kinetic energy per unit weight or kinetic head }
\end{aligned}
$$

$$
\mathrm{Z}=\text { potential energy per unit weight or potential head }
$$

Equation 2 is called Bernoulli's equation.
7. Derive the continuity equation for three dimensional flow of a fluid with neat skeatch. (April/May 2011)

CONTINUITY EQUATION IN THREE-DIMENSIONS

Consider a fluid element of lengths $d x$, dy and $d z$ in the direction of x, y and z. Let u, v and w are the inlet velocity components in x, y and z directions respectively. Mass of fluid entering the face $A B C D$ per second

$$
\begin{aligned}
& =\rho \times \text { Velocity in x-direction } \times \text { Area of ABCD } \\
& =\rho \times v \times(d y \times d z)
\end{aligned}
$$

Then mass of fluid leaving the face EFGH per second

$$
\left.=\rho u \underset{d y d z}{6 x}{ }_{6}^{6} \partial \mathrm{udydz}\right) \mathrm{dx}
$$

\therefore Gain of mass in X-direction
$=$ Mass through ABCD-Mass through EFGH per sec
$=\rho u d y d z-\rho u d y d z-\frac{6}{6 x}(\partial u d y d z) d x$
$=-\frac{6}{6 x}(\rho u \mathrm{dydz}) \mathrm{dx}$

$$
=-{ }_{6 x}^{6}(\rho u) d x d y d z
$$

Similarly, the net gain of mass in Y-direction

$$
=-\frac{6}{6 y}(\rho v) \mathrm{dxdydz}
$$

and in Z-direction $=-{ }_{6 z}^{6}(\rho \mathrm{w}) \mathrm{dxdydz}$
$\therefore \quad$ Net gain of masses $=-\left[\frac{6}{6 x}(\rho u)_{+}{ }_{6 y}^{6}(\rho v)+{ }_{6 z}^{6}(\rho w)\right] d x d y d z$
Since the mass is neither created nor destroyed in the fluid element, the net increase of mass per unit time in the fluid element must be equal to the rate of increase of mass of fluid in the element.

But mass of fluid in the element is $\rho . d x . d y . d z$ and its rate of increase with time

Equating the two expressions

$$
\text { is }{ }^{6}(\rho d x . d y . d z) \text { or }
$$

dx dy dz .

Equation (1) is the continuity equation in Cartesian co-ordinates in its most general form. This Equation is applicable to:
(i) Steady and unsteady flow,
(ii) Uniform and non -uniform flow, and
(iii) Compressible and incompressible fluids.

For steady flow,$\frac{\sigma}{6 t}=0$ and hence equation (1) becomes as

$$
\frac{6}{6 x}(\rho u)+\frac{6}{6 y}(\rho v)+\frac{6}{6 z}(\rho w)=0
$$

If the fluids is incompressible, then ρ is constant and the above equation becomes as

$$
\frac{6 u}{6 x}+\frac{6 v}{6 y}+\frac{6 \mathrm{w}}{6 z}=0
$$

9 .Calculate the dynamic viscosity of the oil which is used for lubrication between a square plate of $0.8 \mathrm{~m} \times 0.8 \mathrm{~m}$, and an inclined plane with an angle of inclination 30°, as shown in the fig the weight of the square plate is 300 N and its slides down the inclined plan with a uniform velocity of $0.3 \mathrm{~m} / \mathrm{s}$. The thickness of oil firm is 1.5 mm . given:

* $\quad \omega \sin 30^{\circ}-F=0$

$$
\begin{aligned}
F & =\omega \sin 30^{\circ} \\
F & =\omega / 2 \\
& =\frac{300}{2}
\end{aligned}
$$

shear force, $F=150 \mathrm{~N}$.

* surface area of square plate, $a=0.8 \mathrm{~m} \times 0.8 \mathrm{~m}$ $=0.64 \mathrm{~m}^{2}$.
* Angle of inclination, $\theta=30^{\circ}$
* Weight of plate, $\omega=300 \mathrm{~N}$
* Tangential velocity of the plate, $u=0.3 \mathrm{~m} / \mathrm{s}$
* Trickiness of oil film, $y=1.5 \mathrm{~mm}$

$$
=1.5 \times 10^{-3} \mathrm{~m}
$$

To find μ :
To find μ : Resolving the force F_{1}
*
$\omega \sin 30^{\circ}-F=0$
$F=\omega \sin 30^{\circ}$
$F=300 \times 1 / 2$
shear forme, $F=150 \mathrm{~N}$

* shear stress, $\tau=\frac{F}{a}$

$$
=\frac{150}{0.64}
$$

$$
I=234.375 \mathrm{~N} / \mathrm{m}^{2}
$$

* Dynamic viscosity, $\mu=\tau \times \frac{d y}{d u}$

$$
\begin{aligned}
& =234.375 \times \frac{1.5 \times 10^{-3}}{0.3} \\
\mu & =1.171875 \mathrm{Ns}\left(\mathrm{~m}^{2}\right. \\
\mu & =11.718 \text { Poise }\left[\because 1 \text { Poise }=\frac{1}{10} \mathrm{Ns} / \mathrm{m}^{2}\right]
\end{aligned}
$$

Result:
Dymanic viscosity of oil $=11.718$ Poise.

PART C

1. Explain Reynold's experiment. (Nov/Dec 2016)

In 1880's, Professor Osborne Reynolds carried out numerous experiment on fluid flow. We will now discuss the laboratory set up of his experiment. The experimental set used by Prof. Osborne Reynold is shown in Fig 1. As you can see from the figure, Reynolds injected dye jet in a glass tube which is submerged in the large water tank. Please see that the other end of the glass tube is out of water tank and is fitted with a valve. He made use of the valve to regulate the flow of water. The observations made by Reynolds from his experiment are given shown through Figures 5 to 7 .

Fig. 1 Experimental Set up for Reynold's Experiment

Fig. 2 Sketch showing the flow to be simple and ordered at low velocity

Fig. 3 The flow of dye forming wavy pattern at medium velocity

Fig. 4 The flow of dye is complex at higher velocity

APPROACH TOWARDS REYNOLDS' NUMBER

Throughout the experiment, Reynolds thought that the flow must be governed by a dimensionless quantity. What he observed was that Inertial force/Viscous force is unit less (dimensionless). Let us see the mathematical expression of inertial force and viscous force.

Inertial force is the force due to motioni.e. which may be also called as kineticforce.
Kinetic energy $=\quad 1 / 2 \mathrm{mv}^{2}$
Inertia force $=\rho v^{2} / 2$
Viscous force $=\mu(\mathrm{du} / \mathrm{dy})$
Reynold's Number $=$ Inertia force/ Viscous force

$$
=\rho v^{2} d y / \mu d u
$$

Now, for a finite length we can write $d y=1$, and $d u=v$
Reynold's Number $=$ Inertia force/ Viscous force

$$
\begin{aligned}
& =\rho v^{2} 1 / \mu \mathrm{v} \\
\text { Reynold's number } & =\rho \cdot \mathrm{v} \cdot \mathrm{l} / \mu
\end{aligned}
$$

2. The dynamic Viscosity of ar oil used for lubrication between a shaft and sleave is 6 poise. The shaft is of diameter 0.4 m and rotates at 190 rpm . calculate the power lost in the bearing for a sleave length of 90 mm . The thickness of the oil film is 1.5 mm .

$$
\begin{aligned}
\text { Power } & =\frac{2 \pi N T}{60}=716.48 \mathrm{~W} \cdot \frac{T}{T} \cdot \frac{10 \mathrm{~mm} \rightarrow 1}{} \\
T & =\text { Force } \times \frac{D}{2}=36.01 \mathrm{Nm} \quad \text { April/May } 2017
\end{aligned}
$$

$$
\text { Force }=\text { shear stress } \times \text { Area }
$$

$$
=1592 \times \pi D L
$$

shear stress, $T=\mu \frac{d u}{d y}=1592 \mathrm{~N} / \mathrm{m}^{2}$

$$
\begin{array}{r}
d u=u-0=3.98 \mathrm{~m} / \mathrm{s} \\
d y=t=1.5 \times 10^{-3} \mathrm{~m} \\
\pi D \mathrm{~N}
\end{array}
$$

Tangential Velocity, $u=\frac{\pi D N}{60}=3.98 \mathrm{~m} / \mathrm{s}$

UNIT -II

FLOW THROUGH PIPES AND BOUNDARY LAYER

1. Difference between hydraulic Gradient line and Energy Gradient line.
(Nov/Dec 2015, May/June 14,09)
Hydraulic gradient line :-
Hydraulic gradient line is defined as the line which gives the sum of pressure head and datum head of a flowing fluid in a pipe with respect the reference line

Total energy line :-
Total energy line is defined as the line which gives the sum of pressure head, datum head and kinetic head of a flowing fluid in a pipe with respect to some reference line
2. Mention the general characteristics of laminar flow. (May/june 14)

1. There is a shear stress between fluid layers
2. 'No slip' at the boundary
3. The flow is rotational
4. There is a continuous dissipation of energy due to viscous shear
5. Define boundary layer thickness
(Nov/Dec 15)
It is defined as the distance from the solid boundary in the direction perpendicular to the direction of flow where the velocity of fluid is approximately equal to 0.99 times the free stream velocity
6. What is Hagen poiseuille's formula ? (May/june12,Nov/Dec 2012)

$$
\text { P1-P2 / pg = h f = } 32 \mu \mathrm{UL} / \mathrm{gD}^{2}
$$

The expression is known as Hagen poiseuille formula .
Where P1-P2 / _g = Loss of pressure head $\quad U=$ Average velocity
$\mu=$ Coefficient of viscosity $\quad D=$ Diameter of pipe
$\mathrm{L}=$ Length of pipe
5. What is the expression for head loss due to friction in Darcy formula?
(Nov/Dec 2010)

$$
h f=4 f L V^{2} / 2 g D
$$

Where

$$
\begin{aligned}
& f=\text { Coefficient of friction in pipe } L=\text { Length of the pipe } \\
& D=\text { Diameter of pipe } V=\text { velocity of the fluid }
\end{aligned}
$$

6. List the minor energy losses in pipes? (Nov/Dec 2010,May/June 07)

This is due to
i. Sudden expansion in pipe ii. Sudden contraction in pipe.
iii. Bend in pipe . iv. Due to obstruction in pipe
7. What are the factors influencing the frictional loss in pipe flow?

Frictional resistance for the turbulent flow is

1. Proportional to vn where v varies from 1.5 to 2.0 .
2. Proportional to the density of fluid .
3. Proportional to the area of surface in contact.
4. Independent of pressure. Depend on the nature of the surface in contact.
5. What are the basic educations to solve the problems in flow through branched pipes?
i. Continuity equation .
ii. Bernoulli's formula .
iii. Darcy weisbach equation .
6. What is Dupuit's equation ?

$$
\left(\mathrm{L}_{1} / \mathrm{d}_{1}{ }^{5}\right)+\left(\mathrm{L}_{2} / \mathrm{d}_{2}{ }^{5}\right)+\left(\mathrm{L}_{3} / \mathrm{d}_{3}{ }^{5}\right)=\left(\mathrm{L} / \mathrm{d}^{5}\right)
$$

Where
L1, d 1 = Length and diameter of the pipe 1
L2, d2 = Length and diameter of the pipe 2
L3, d3 = Length and diameter of the pipe 3
10. Define Moody diagram (Nov/Dec 2012, April/May 11)

It is a graph in non-dimensional form that relates the Darcy friction factor, Reynolds number and relative roughness for fully developed flow in a circular pipe.
11. Define boundary layer. (April/May 2017)

When fluids flow over surfaces, the molecules near the surface are brought to rest due to the viscosity of the fluid. The adjacent layers also slow down, but to a lower and lower extent. This slowing down is found limited to a thin layer near the surface. The fluid beyond this layer is not

affected by the presence of the surface. The fluid layer near the surface in which there is a general slowing down is defined as boundary layer.
12. What are equivalent pipes? Mention the equation used for it. (April/May 2017)

Equivalent pipes are defined as the pipes of uniform diameter having loss of head and discharge equal to the loss of head and discharge of a compound pipe consisting of several pipes of different lengths and diameters. The uniform diameter of the equivalent pipe is called equivalent size of the pipe.

The equation used to represent equivalent pipe is called Dupit's equation which is given as,

$$
\left(\mathrm{L}_{1} / \mathrm{d}_{1}{ }^{5}\right)+\left(\mathrm{L}_{2} / \mathrm{d}_{2}^{5}\right)+\left(\mathrm{L}_{3} / \mathrm{d}_{3}{ }^{5}\right)=\left(\mathrm{L} / \mathrm{d}^{5}\right)
$$

Where
$\mathrm{L} 1, \mathrm{~d} 1=$ Length and diameter of the pipe 1
L2, d2 = Length and diameter of the pipe 2
L3, d3 = Length and diameter of the pipe 3

1. A laminar flow is taking place in a pipe at dia 20 cm . The maximum velocity $1.5 \mathrm{~m} / \mathrm{s}$. Find mean velocity and radius at which this occurs. Also. Calculate velocity at 4 cm from wall of pipe. (16)
$[\mathrm{NOV} / \mathrm{DeC}-2013]$
Given:

$$
\begin{aligned}
& D=20 \mathrm{~cm}=0.20 \mathrm{~m} \\
& U_{\max }=1.5 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Find: (i) mean velocity, \bar{u}.
(di) Radius at which \bar{u} occurs.
(iii) Velocity at 4 cm from the wall.

Solution:

$$
\begin{aligned}
& \text { (i) } \\
& \text { Ratio of } \frac{U_{\text {max }}}{\widetilde{u}}=2.0 \text { [Take from } \\
& \text { the Derivation] } \\
& \frac{1.5}{\bar{u}} \pm 2 \\
& \bar{u}^{\prime}=\frac{1.5}{2}=0.75 \mathrm{~m} / \mathrm{s} \\
& \bar{u}=0.75 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(ii) Radius at which $\frac{1}{u}$ occurs.

The velocity u, at any radius ' R ' is given by

$$
\begin{aligned}
u= & 1-1 / 4 \mu\left(\frac{\partial p}{\partial r}\right]\left[R^{2}-r^{2}\right] \cdot(\partial R) \\
& -1 / 4 \mu\left(\frac{\partial p}{\partial n}\right) R^{2}\left[1-r^{2} / R^{2}\right]
\end{aligned}
$$

But from equation $O_{\text {man }}$ is given by

$$
\begin{aligned}
& U_{\max }=-\nu / 4 \mu\left(\frac{\partial p}{\partial n}\right) \cdot R^{2} \\
& {\left[\because u=U_{\operatorname{man}}\left[1-\left(\frac{r}{R}\right)^{2}\right]\right.}
\end{aligned}
$$

Now, the radiusrat which $u=\bar{u}=0.75 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
0.75 & =1.5\left[1-\left(\frac{r}{(D / 2)}\right)^{2}\right] \\
& =1.5\left[1-\left(\frac{r}{0.2 / 2}\right)^{2}\right] \\
& =1.5\left[1-(r / 0.1)^{2}\right] \\
\frac{0.75}{0.5} & =1-(r / 0.1)^{2} \\
\frac{r}{0.1} & =1-\frac{0.75}{0.1 .5}=1-\frac{1}{2}=1 / 2 \\
r & =0.1 \times \sqrt{0.5} \\
& =0.1 \times 0.707=0.0707 \mathrm{~m} . \\
r & =70.7 \mathrm{~mm} .
\end{aligned}
$$

(iii) Velocity at 4 cm fern the wall,

$$
\begin{aligned}
r & =R-4.0 \\
& =10-4 \Rightarrow 6 . \mathrm{cm}(0.0) 0.06 \mathrm{~m} .
\end{aligned}
$$

The velocity at a radius $=0.06 \mathrm{~m}$.(Os)
4 cm from pipe wall is given by

$$
\begin{aligned}
& =O_{\operatorname{man}}\left[1-(r / R)^{2}\right] \\
& =1.5\left[1-\left(\frac{0.06}{0.1}\right)^{2}\right] \\
& =1.5[1.0-0.36] \\
& \\
& =1.5 \times 0.64=0.96 \mathrm{~m} / \mathrm{s} \\
& u
\end{aligned}
$$

Result:
Mean velocity $u=0,75 \mathrm{~m} / \mathrm{s}$.
$\begin{gathered}\text { radius at which } \\ \pi \text { oceus }\end{gathered}(r)=70.7 \mathrm{~mm}$.
velocity at 4 cm from $(u)=0.96 \mathrm{~m} / \mathrm{s}$.
the wall.
2. An oil of specific gravity 0,80 \& Kinematic viscosity $15 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$. flows in a smooth pipe of 12 cm diameter at a rate of $150 \mathrm{lit} / \mathrm{min}$. Determine whether the flow is laminar or turbulent. Also calculate the velocity at the center line \& velocity at a radius of 4 cm . What a head lass for a length of com? What will be the entry denpth? Also determine the wall shear (16) [Nov/Dec -2014]

Given:

$$
\begin{aligned}
& S=0.80 . \\
& \gamma=15 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \\
& d=0.12 \mathrm{~m} . \\
& Q=150 \mathrm{l} / \mathrm{min}=\frac{15 \times 10^{-3}}{60}=0.0025 \mathrm{~m}^{3} / \mathrm{s} \\
& r=4 \mathrm{~cm}=0.04 \mathrm{~m} . \\
&\left(x_{2}-x_{1}\right)
\end{aligned}
$$

Find:
head loss $h_{f}=$?
Entry length $=$?
wall shear $\varepsilon_{\theta}=$?
Solution:
(i) $\mathrm{Re}=\frac{13}{P}$

$$
\begin{aligned}
& Q=A \times V \\
& V=Q / A
\end{aligned}
$$

$$
\begin{aligned}
v & =\frac{0.0025}{\pi / 4(0.12)^{2}} \\
v & =0.221 \mathrm{~m} / \mathrm{s} \\
\operatorname{Re} & =\frac{0.221 \times 0.12}{15 \times 10^{-6}} \Rightarrow 1768.3
\end{aligned}
$$

$\operatorname{Re}<2000 ; \quad \therefore$ The flow is laminar.
(i)

$$
\begin{aligned}
& U_{\max }=\frac{1}{4 \mu}\left(\frac{\partial p}{\partial n}\right) \cdot R^{Q} . \\
& p_{1}-p_{2}=\frac{32 \mu \bar{u} L}{D^{2}} \quad \frac{\partial p}{\partial x}=\frac{p_{2}-p_{1}}{x_{2}-x_{1}} . \\
& \bar{u}=v=0.221 \mathrm{~m} / \mathrm{s} \\
& p_{1}-p_{2}=\frac{32 \times 0.012 \times 0.221 \times 10 \quad\left[\begin{array}{l}
\quad v \\
(0.12)^{2}
\end{array} \quad m=v \times p\right.}{m} \quad \begin{array}{l}
\quad \mathrm{m}
\end{array} \\
& m=\Delta 15 \times 10^{10_{x}} \\
& P=1000 \times 0.8 \\
& \beta_{1}-p_{2}=58.946 \mathrm{~N} / \mathrm{m}^{2} \text {. } \\
& \begin{aligned}
P & =1000 \times 0 \\
& \left.=800 \mathrm{~kg} / \mathrm{m}^{3}\right]
\end{aligned} \\
& U_{\text {max }}=0.441 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(iii) Velocity at 4 cm from center.

$$
\begin{aligned}
r & =0.04 \mathrm{~m} \\
& =0 \mathrm{mam}\left(1-(r / R)^{2}\right) \\
& =0.441\left(1-\left(\frac{0.04}{0.06}\right)^{2}\right) \\
& =0.245 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(iii) wall shear.

$$
\begin{aligned}
& \tau_{0}=-\left(\frac{\partial p}{\partial n}\right) \times(R / 2) \\
&= \frac{p_{1}-p_{2}}{x} \times(R / 2) \\
&= \frac{58.94}{10} \times \frac{0.06}{2} \\
& \tau_{0}= 0.1767 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

v) Head loss for length 10 m .

$$
\begin{aligned}
h_{f} & =\frac{32 \mu \bar{\pi} L}{\rho g D^{2}} \\
& =\frac{32 \times 0.012 \times 0.221 \times 10}{800 \times 9.81 \times(0.12)^{2}} \\
h_{f} & =0.0075 \mathrm{~m}
\end{aligned}
$$

Result:
(i) $h_{f}=0,0075 \mathrm{~m}$.
(ii) Wall shear $\left(\varepsilon_{0}\right)=0.1767 \mathrm{~N} / \mathrm{m}^{2}$.
(iii) The velocity at 4 cm from center $\}=0.245 \mathrm{~m} / \mathrm{s}$. (u)'
3. Oil flows through a pipe 150 mm in diameter and 650 mm in length with a velocity of $0.5 \mathrm{~m} / \mathrm{s}$. If the Kinematic viscosity of oil is $18.7 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$. Find the power lost in over coming friction. Take sp.g.of oil as 0.9. (16)
[APr/may -2015]

Given:

$$
\begin{aligned}
& \alpha=150 \mathrm{~mm}=0.15 \\
& L=650 \mathrm{~mm}=0.65 \\
& V=0.5 \mathrm{~m} / \mathrm{s} \\
& \nu=18.7 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s} \\
& \delta=0.9 \\
& {[\because P=0.9 \times 1000} \\
& \because\left.=900 \mathrm{~kg} / \mathrm{m}^{3}\right]
\end{aligned}
$$

Find:
Power lost (P)

Formula:

$$
P=\frac{P Q g h_{f}}{1000} \mathrm{~K} \mathrm{\omega} .
$$

Solution:

$$
\begin{aligned}
& R e=\frac{V D}{V} \\
&=\frac{0.5 \times 0.15}{18.7 \times 10^{-4}} \Rightarrow \frac{0.075}{18.7 \times 10^{-4}} \\
& R_{e}=40.106<2000 . \quad\left[R_{e}\right. \text { value is } \\
& \text { The flow is than }
\end{aligned}
$$

$$
h_{f}=\frac{4 f L v^{2}}{2 g \times d}
$$

$$
f=\frac{16}{R_{e}}
$$

[if the flow is laminar

$$
=\frac{16}{40.106}
$$ calculate $f=16 / R e]$

$$
f=0.3
$$

$$
\begin{aligned}
h_{f}= & \frac{4 \times 0.3 \times 650 \times(0.5)^{2}}{0.15 \times 2 \times 9.81} \\
h_{f}= & \frac{195}{2.943} \Rightarrow 66.25 \\
& h_{f}=66.25 \mathrm{~m}
\end{aligned}
$$

Power lost $(P)=\frac{\rho g Q h_{f}}{1000} \mathrm{Kw}$

$$
\begin{aligned}
= & \frac{9.81 \times 1900 \times 0.0088 \times 66.25}{1000} \\
P & =5.147 \mathrm{~K} \mathrm{\omega}
\end{aligned}
$$

Result: (i) Lead Loss $\left(h_{f}\right)=66.25 \mathrm{~m}$
(ii) Power lost $(P)=5.147 \mathrm{KW}$.
4. Two pipes of di 40 cm \& 20 cm are each 300 m long. when pipes connected in series $80.10 \mathrm{~m}^{3} / \mathrm{s}$. Find loss of head ss loss of head in $8 / \mathrm{m}$ to pass the same total discharge when pipes connected in parallel Take $f=0.0075$ for each pipe. (16)
$\{\mathrm{NOV} / \mathrm{Dec}-2010]$
Given:

$$
\begin{gathered}
D_{1}=40 \mathrm{~cm}=0.4 \mathrm{~m} \\
D_{2}=20 \mathrm{~cm}=0.2 \mathrm{~m} \\
L=L_{2}=300 \mathrm{~m} \\
Q=0.1 \mathrm{~m}^{3} / \mathrm{s} . \\
f=0.0075 .
\end{gathered}
$$

Find :
(i) head loss for series ss parallel.

Solution:
For series connection,

$$
\begin{array}{c|l}
Q=A_{1} V_{1}=A_{2} V_{2} \\
Q=A_{1} V_{1} & Q_{2}=A_{2} V_{2} \\
0.1=\frac{\pi}{4}(0.4)^{2} \times V_{1} & 0.1=\frac{\pi}{4}(0.2)^{2} \times V_{2} \\
V_{1}=0.79 \mathrm{~m} / \mathrm{s} & V_{2}=3.18 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Neglecting the minos losses.

$$
\begin{aligned}
& H=\frac{\frac{4 f L_{1} V_{1}^{2}}{2 g d_{1}}+\frac{4 f . L_{2} V_{2}^{2}}{2 g d_{2}}}{=} \\
& \frac{4 \times 0.0075 \times 300 \times(0.79)^{2}}{2 \times 9.81 \times 0.4}+ \\
& \frac{4 \times 0.0075 \times 800 \times(3.18)^{2}}{2 \times 9.81 \times 0.2} \\
& H=
\end{aligned}
$$

For parallel connection,

$$
\begin{aligned}
& \text { allee connection, } \\
& \qquad \begin{aligned}
h_{f} & =\frac{4 f L_{1} V_{1}^{2}}{2 g \times d_{1}}=\frac{4 f L_{2} V_{2}^{2}}{2 g \times d_{2}} \\
\frac{V_{1}^{2}}{D_{1}} & =\frac{V_{2}^{2}}{D_{2}} \\
\frac{V_{1}^{2}}{0.4}= & \frac{V_{2}^{2}}{0.2} \\
V_{1} & =1.41 . V_{2} \\
Q & =A_{1} V_{1} \\
0.1 & =\pi / 4(0.4)^{2} \times V_{1} \\
& =\pi / 4(0.4) \times V_{1} \\
& V_{1}=0.79 \mathrm{~m} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
Q & =A_{1} V_{1}=A_{2} V_{2} \\
Q & =A_{2} V_{2} \\
V_{2} & =0.56 \mathrm{~m} / \mathrm{s} \\
h_{f} & =\frac{4 f \alpha_{1} V_{1}^{2}}{2 g \times d_{1}} \\
& =\frac{4 \times 0.0075 \times 300 \times(0.79)^{2}}{2 \times 9.81 \times 0.4} \\
h_{f} & =0.71 \mathrm{~m}
\end{aligned}
$$

Result:
Head Loss for series pipe is 23.9 m Head Loss for parallel pipe is 0.71 m .
5. A pipe line of 0.6 m diameter is 1.5 km dong. To Increase the discharge, another bine of the same diameter is Introduced parallel to the first in the second half of the length. Neglecting minor Cosses. find the Increase in discharge if $4 f=0,04$. The head at Jniet is 300 mm .
(16)
LApr/may-2015)

Given.

$$
\begin{aligned}
\text { Dia. of Pipe line }(D) & =0.6 \mathrm{~m} \\
\text { Length of Pipe line }(L) & =1.5 \mathrm{~km} \\
& =1.5 \times 1000=1500 \mathrm{~m} \\
4 f & =0.04(0 \mathrm{R})
\end{aligned}
$$

$$
\begin{aligned}
f & =0.01 \\
\text { Head at Inlet } h & =300 \mathrm{~mm}
\end{aligned}=0.3 \mathrm{~m}, ~ \begin{aligned}
\text { Head at outlet } & =\text { atmospheric head }=0 \\
\therefore \text { Head loss }\left(h_{f}\right) & =0.3 \mathrm{~m} \\
\text { Length of another parallel pipe } L_{1} & =\frac{1500}{2} \\
& =750 \mathrm{~m} .
\end{aligned}
$$

Dial. of another parallel pipe. $d_{1}=0.6 \mathrm{~m}$.

I it case.
Discharge for a single pipe of length 1500 m 88 ?
dial $J=0.6 \mathrm{~m}$
This head loss due to friction In
single pipe is $h_{f}=\frac{4 f L v^{2}}{d \times 2 g}$.
Where $V^{*}=$ Velocity of flow for single pipe.

$$
\begin{aligned}
0.3 & =\frac{4 \times 0.01 \times 1500 \times V^{* 2}}{0.6 \times 2 g} \\
V^{*} & =\sqrt{\frac{0.3 \times 0.6 \times 2 \times 9.81}{4 \times 0.01 \times 1500}} \Rightarrow 0.2426 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Discharge $Q^{*}=$ Area $\times V^{*}$

$$
\begin{aligned}
& =0.2426 \times \pi / 4(0.6)^{2} \\
& =0.0685 \mathrm{~m}^{3} / \mathrm{s} .
\end{aligned}
$$

$2^{\text {nd }}$ case.
When an additional pipe of length 750 m is diameter 0.6 m is connected in parallel with the last half length of the pipe.
Let, $Q_{1} \rightarrow$ discharge in $1^{\text {st }}$ parallel pipe.
$\mathbb{Q}_{2} \rightarrow$ discharge in $2^{\text {nd }}$ parallel pipe

$$
Q=Q_{1}+Q_{2} .
$$

where, $Q \rightarrow$ disehaige in mainpipe when pipes are parallel.
But as the length is diameters of each parallel pipe is same.

$$
\because \quad Q_{1}=Q_{2}=Q / 2
$$

Consider the flow through pipe $A B C$ or $A B D$

$$
\text { Head loss through } A B C=\begin{align*}
& \text { Head lost } \tag{1}\\
& \text { through } A B
\end{aligned}+\begin{aligned}
& \text { Head lost } \\
& \text { through } B C
\end{align*} \rightarrow(1)
$$

int head lost due to friction through $A B C=0.3 \mathrm{~m}$ given.
Head loss due to

$$
\begin{aligned}
& d \text { loss due to } \\
& \text { friction through } A B=\frac{4 \times f \times 750 \times v^{2}}{0.6 \times 2 \times 9.81},
\end{aligned}
$$

Where $V=$ velocity of

$$
=\frac{Q}{\text { Area }}=\frac{Q}{\pi / 4(0.6)^{2}}=\frac{40}{\pi \times 0.36}
$$ flow theorist $A B$.

\therefore Head loss due to friction through $A B$

$$
\begin{aligned}
& =\frac{4 \times 0.01 \times 750}{0.6 \times 2 \times 9.81} \times\left(\frac{4 Q}{\pi \times 0.36}\right)^{2} \\
& =31.87 Q^{2}
\end{aligned}
$$

Head loss due to friction through $B C$

$$
\begin{aligned}
& =\frac{4 \times f \times L_{1} \times v_{1}^{2}}{d_{1} \times 2 g} \\
& =\frac{4 \times 0.01 \times 750}{0.6 \times 2 \times 9.81} \times\left[\frac{Q}{2 \times \pi / 4(0.6)^{2}}\right] \\
& \begin{array}{l}
\left.=\frac{4 \times 0.01 \times 750}{0.6 \times 2 \times 9.81} \times \frac{\left[\because V_{1}\right.}{4 \times \pi^{2} \times 0.36^{2}}=\frac{\operatorname{Discharqe}(Q)}{Q^{2}}=\frac{Q}{\pi / 4(0.6)^{2}}\right] \\
=7.969 Q^{2}
\end{array}
\end{aligned}
$$

Substituting these values in equ (1) we get,

$$
\begin{aligned}
0.3 & =31.87 Q^{2}+7.969 Q^{2} \\
& =39.839 Q^{-2} \\
Q & =\sqrt{\frac{0.3}{39.839}}=0.0867 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Increase in discharge } & =Q-Q^{*} \\
& =0.0867-0.0685 \\
& =0.0182 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

6. Derive the Darcy-Weisbach equation for calculating pressure drop in pipe.
(Nov/Dec 2011)

Uniform horizontal pipe.

Consider a uniform horizontal pipe, having steady low as shown figure let 1-1 and 2-2 are two sections of pipe
$\mathrm{P}_{1}=$ pressure intensity at section 1-1
$\mathrm{V}_{1}=$ velocity of flow at section 1-1
$\mathrm{L}=$ length of the pipe between sections 1-1 and 2-2
$\mathrm{D}=$ Diameter of pipe
$\mathrm{F}=$ Frictional resistance per unit wetted area per unit velocity
$\mathrm{h}_{\mathrm{f}}=$ loss of head due to friction
P_{2} and V_{2} are values of pressure intensity and velocity at section 2-2
Applying Bernoulli's equation between sections 1-1 and 2-2,
Total head at 1-1 = total head at 2-2 + loss of head due to friction between 1-1 and 2-2

$$
\frac{p_{1}}{\rho \mathrm{~g}}+\frac{v_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1}=-\frac{p_{\underline{2}}}{\rho \mathrm{~g}}+\frac{v_{2}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{2}+\mathrm{h}_{\mathrm{f}}
$$

$\mathrm{z}_{1}=\mathrm{z}_{2}$ as pipe is horizontal
$\mathrm{v}_{1}=\mathrm{v}_{2}$ as dia of pipe is same at 1-1 and 2-2

$$
\begin{aligned}
& \underset{\rho \mathrm{g}}{\underline{p_{1}}}=\frac{p_{2}}{\rho \mathrm{~g}} \mathrm{~h}_{\mathrm{f}} \\
& \mathrm{~h}_{\mathrm{f}}=\frac{p_{1}}{\rho \mathrm{~g}}-\frac{p_{2}}{\rho \mathrm{~g}} \text {-----------------------1} 1
\end{aligned}
$$

But h_{f} is the head lost due to friction and hence intensity of pressure will be reduced in the direction of row by frictional resistance

Now frictional resistance $=$ frictional resistance per unit wetted area per unit velocity X wetted area X velocity ${ }^{2}$

$$
\begin{gathered}
\mathrm{F}_{1}=\mathrm{f}^{\prime} \mathrm{X} \pi d L \mathrm{X} \mathrm{~V}^{2} \quad\left\{\text { Wetted area }=, \quad \mathrm{V}=\mathrm{V}_{1}=\mathrm{V}_{2}, \text { Perimeter } \mathrm{P}=\pi d\right\} \\
\mathrm{F}_{1}=\mathrm{f}^{\prime} P L \mathrm{~V}^{2}
\end{gathered}
$$

The forces acting on the fluid between sections 1-1 and 2-2 are
$>$ Pressure force at section $1-1=\mathrm{p}_{1} \mathrm{~A}$

- Where A = Area of pipe
$>$ Pressure force at section 2-2 $=\mathrm{p}_{2} \mathrm{~A}$
$>$ Frictional force F_{1}

Resolving all Forces in the horizontal direction, we have

$$
\begin{gathered}
p_{1} \mathrm{~A}-p_{2} \mathrm{~A}-\mathrm{F}_{1}=0 \\
\left(p_{1}-p_{2}\right) \mathrm{A}=\mathrm{F}_{1}=\mathrm{f}^{\prime} P L \mathrm{~V}^{2}
\end{gathered}
$$

But from equation $1\left(p_{1}-p_{2}\right)=\rho g \mathrm{hf}_{\mathrm{f}}$
Equating the value of ($p_{1}-p_{2}$) we get

$$
h_{f}=4 f \mathrm{flv}^{2} / 2 \mathrm{gd}
$$

FLOW OF VISCOUS FLUID THROUGH CIRCULAR PIPE

For the flow of viscous fluid through circular pipe, the velocity distribution across a section The ratio of maximum velocity to average velocity, the shear stress distribution and drop of Pressure or a given length is to be determined. The flow through the circular pipe will be viscous Or laminar, if the Reynolds number $\left(R_{e}\right)$ is less than 2000.The expression for Reynolds number is given by

$$
\mathrm{R}_{\mathrm{e}}=\frac{\rho \mathrm{VD}}{\mu}
$$

Viscous flow through a pipe.
$\rho=$ Density of fluid flowing through pipe
V=Average velocity of fluid
$D=$ Diameter of pipe and
$\mu=$ Viscosity of fluid
Consider the horizontal pipe of radius R . The viscous fluid is flowing from left to right in the pipe as Shown in fig. consider a fluid n element of radius r, sliding in a cylindrical fluid element of radius

1. Shear stress distribution

($\mathrm{r}+\mathrm{dr}$).Let the length of fluid element be Δx. If ' p ' is the intensity of pressure on the face $A B$, thenthe intensity of pressure on the face CD will be $\left(\mathrm{p}+{ }^{6 p} \Delta x\right)$. Then the forces acting on the fluid element are

1. The pressure force, $\mathrm{p} \times \pi r^{2}$ on face AB .
2. The pressure force, $\left(\mathrm{p}+\frac{6 p}{6 x} \Delta x\right) \pi r^{2}$ on force CD.
3. The shear force, $\tau \times 2 \pi r \Delta x$ on the surface of fluid element. As there is no acceleration; hence the Summation of all forces of all forces in the direction of flow must be zero i.e.

$$
\begin{gather*}
\mathrm{p} \pi r^{2}-\left(\mathrm{p}+\frac{6 p}{6 x} \Delta x\right) \pi r^{2}-\tau \times 2 \pi r \times \Delta x .=0 \\
\text { Or } \\
-\frac{6 p}{6 x} \Delta x \pi r^{2}-\tau \times 2 \pi r \times \Delta x=0 \\
\text { Or } \\
-\frac{6 p}{6 x} \cdot r-2 \tau=0 \\
\therefore \tau=-\frac{6 p}{6 x} \frac{r}{2} \tag{1}
\end{gather*}
$$

The shear stress τ across a section varies with ' r ' as $\frac{6 p}{6 x}$ across a section is constant.

2. Velocity Distribution.

Shear stress and velocity distribution across a section.

To obtain the velocity distribution across a section, the value of shear stress $\tau=\mu \frac{d u}{d y}$ is substituted in equation (1)

But in the relation $\tau=\mu \frac{d u}{d y}, y$ is measured from the pipe wall. Hence

$$
\begin{aligned}
& \text { Y }=\text { R-r and } d y=-d r \\
\therefore \quad & \tau=\mu \frac{d u}{-d r}=-\mu \frac{d u}{d r}
\end{aligned}
$$

Substituting this value in (1), we get

$$
-\mu \frac{d u}{d r}=-\frac{6 p}{6 x} \frac{r}{2} \text { or } \frac{d u}{d r}=\frac{1}{2 \mu} \frac{6 p}{6 x} r
$$

Integrating this above equation w.r.t. ' r ', we get

$$
\mu={ }_{4 \mu 6 x}^{16 p} \mathrm{r}^{2}+\mathrm{C}
$$

Where C is the Constant of Integration and its value is obtained from boundary condition that at $\mathrm{r}=\mathrm{R}, \mu=0$.

$$
\begin{gathered}
\therefore 0=\frac{1}{4 \mu 6 x} \mathrm{R}^{2}+\mathrm{C} \\
\therefore \quad \mathrm{C}=-\frac{1}{4 \mu} \frac{6 p}{6 x} \mathrm{R}^{2}
\end{gathered}
$$

Substituting this value of C in equation

$$
\begin{aligned}
& \mu=\frac{1}{4 \mu} \frac{\overline{6 p}}{6 x} \bar{r}^{2}-\frac{1}{4 \mu} \frac{6 p}{6 x} R^{2} \\
\therefore=- & \frac{1}{4 \mu} \frac{6 p}{6 x}\left[R^{2}-r^{2}\right]
\end{aligned}
$$

In equation (3), values of $\mu, \frac{6 p}{6 x}$ and R are constant, which means the velocity, μ varies with the square of r. Thus equation (3) is an equation o parabola. This shows that the velocity distribution across the section of a pipe is parabolic. This velocity distribution is shown in fig.

1. Ratio of Maximum Velocity to Average Velocity.

The velocity is maximum, when $r=0$ in equation Thus maximum velocity, $U_{\max }$ is obtained as

$$
\begin{equation*}
\mathrm{U} \max =-\frac{1}{4 \mu} \frac{6 p}{6 x} \mathrm{R}^{2} \tag{4}
\end{equation*}
$$

The average velocity, u, is obtained by dividing the discharge of the fluid across the section by the area of the pipe (πR^{2}). The discharge (Q) across the section is obtained by considering the flow through a circular ring element of radius r and thickness dr as shown in Fig. The fluid flowing per second through this elementary ring $d Q=$ velocity at a radius r xarea of ring element

$$
\begin{aligned}
& =\mathrm{u} \times 2 \pi \mathrm{rdr} \\
& =-\frac{1}{4 R} \frac{6 p}{6 x}\left[R^{2}-\mathrm{r}^{2}\right] \times 2 \pi \mathrm{rdr} \\
& \mathrm{Q}=\int_{0}^{4 / R} \stackrel{6 x}{d} Q=\int_{0}^{R}-{ }_{4 \mu 6 x}^{16 p}\left(R^{2}-r^{2}\right) \times 2 \pi \mathrm{rdr} \\
& ={ }_{4 \mu}^{1}\left(-{ }_{6 *}^{6 p}\right) \times 2 \pi \int_{0}^{R}\left(R^{2}-r^{2}\right) r d r \\
& ={ }_{4 \mu}^{1}\left(-{ }_{6 x}^{6 p}\right) \times 2 \pi \delta^{R}\left(\left(R^{2} r-r^{3}\right)\right) d r \\
& ={ }_{\frac{1}{4 \mu}}\left(-\frac{6 p}{\sigma x}\right) \times 2 \pi\left[\frac{R^{2} r^{2}}{2}-\frac{r^{4}}{4}\right]={ }_{4 \mu}^{1}\left(-\frac{6 p}{\sigma x}\right) \times 2 \pi\left[R_{2}^{R^{2} r^{2}}-\frac{r^{4}}{4}\right] \\
& =\frac{1}{4 \mu}\left(-\frac{6 p}{6 x}\right) \times 2 \pi \times \frac{R^{R^{4}}}{4}=\frac{\pi}{8 \mu}\left(-\frac{6 p}{6 x}\right) R^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { Average velocity, } \overline{\mathrm{u}}=\frac{\mathrm{Q}}{\text { Area }}=\frac{\frac{\pi}{8 \mu}\left(-\frac{6 p}{6 x}\right) R^{4}}{\pi R^{2}} \\
& \overline{\mathrm{u}}=\frac{1}{8 \mu}\left(-\frac{6 p}{6 x}\right) \mathrm{R}^{2} \\
& \quad \text { or }
\end{aligned}
$$

Dividing equation (4) by equation (5),

$$
\frac{U \max }{\overline{\mathrm{u}}}=\frac{-\frac{1}{4 \mu}\left(\frac{6 p}{6 x}\right) R^{2}}{8 \mu\left(-\frac{-0 p}{6 x}\right) R^{2}}=2.0
$$

\therefore Ratio of maximum velocity to average velocity $=2.0$.

4. Drop of Pressure for a given Length (L) of a pipe

From equation (5), we have

$$
\overline{\mathrm{u}}=\frac{1}{8 \mu}\left(-\frac{6 p}{6 x}\right) \mathrm{R}^{2 \text { or }}\left(-\frac{6 p}{6 x}\right)=\frac{8 \mu \bar{u}}{R^{2}}
$$

Integrating the above equation w.r.t. x_{1} we get

$$
\begin{aligned}
& \text { lation w.r.t. } \mathrm{X}_{1} \text { ye vet } \\
&-\int_{2}^{1} d p=\int_{8 \mu \mathrm{u}}^{2} \overline{R^{2}} d x \\
&-\left[\mathrm{P}_{1}-\mathrm{P}_{2}\right]=\frac{8 \mu \mathrm{u}}{R^{2}}\left[\mathrm{X}_{1}-\mathrm{X}_{2}\right] \text { or }\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)=\frac{8 \mu \overline{\mathrm{u}}}{R^{2}}\left[\mathrm{X}_{1}-\mathrm{X}_{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{8 \mu \overline{\mathrm{u}}}{R^{2} \mathrm{~L}} \\
& =\frac{8 \mu \overline{\mathrm{u}} L}{\left(\frac{D}{2}\right)^{2}}
\end{aligned} \quad\left\{\therefore \mathrm{X}_{2}-\mathrm{X}_{1}=\mathrm{L} \text { from Fig. }\right\}
$$

$$
\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)=\frac{32 \mu \overline{\mathrm{u}} L}{D^{2}}, \text { where } \mathrm{p}_{1}-\mathrm{p}_{2} \text { is the drop of pressure. }
$$

\therefore Loss of pressure head $=\frac{p_{1}-p_{2}}{p \mathrm{~g}}$

$$
\therefore \frac{p_{1}-p_{2}}{p \mathrm{~g}}=\mathrm{h}_{\mathrm{f}}=\frac{\operatorname{cog}^{32 \mu \overline{\mathrm{u}} L}}{p \mathrm{~g} D^{2}}
$$

This Equation is called Hagen Poiseuille Formula.
8. Three pipes of $400 \mathrm{~mm}, 200 \mathrm{~mm}$ and 300 mm diameters have lengths of 400 m , 200 m , and 300 m respectively. They are connected in series to make a compound pipe. The ends of the compound pipe are connected with two tanks whose difference of water levels is $16 \mathbf{~ m}$. if the coefficient of friction for these pipes is same and equal to 0.005 , determine the discharge through the compound pipe neglecting first the minor losses and then including them. (Nov/Dec 2016)

Given:

Ling th of pipe (2), $L_{2}=600 \mathrm{~m}$
length of pipe (3), $L_{3}=300 \mathrm{~m}$
Diameter of pipe (1), $d_{1}=400 \mathrm{~mm}=0.4 \mathrm{~m}$
Diameter of pipe (2), $d_{2}=300 \mathrm{~mm}=0.3 \mathrm{~m}$
Diameter of pipe (3), $d_{3}=200 \mathrm{~mm}=0.2 \mathrm{~m}$ Difference Read at inlet and outlet, $H=15 \mathrm{~m}$

Sols:-
Gives: Total head loss. $I-1=15 \mathrm{~m}$

$$
\begin{array}{r}
\Rightarrow h_{1}+h_{0}+h c_{c_{2}}+h_{c_{3}}+h f_{1}+h f_{2}+h f_{3}=15 \\
\Rightarrow \frac{0.5 V_{1}{ }^{2}}{2 g}+\frac{V_{2}{ }^{2}}{2 g}+\frac{0.5 V_{2}^{2}}{2 g}+\frac{0.5 V_{3}^{2}}{2 g}+\frac{4 f L_{1} V_{1}^{2}}{2 g d_{1}} \\
\quad+\frac{4 f L_{2} V_{2}{ }^{2}}{2 g d_{2}}+\frac{4 f L_{3} V_{-3}^{2}}{2 g d_{3}}=15- \tag{1}
\end{array}
$$

By continuity eq:

$$
\begin{aligned}
Q & =A_{1} V_{1}=A_{2} V_{2}=A_{3} V_{3} \\
A_{1} V_{1}=A_{2} V_{2} & A_{3} V_{3}=A_{2} V_{2} \\
\frac{\pi}{4} \times 0.4^{2} V_{1}=\frac{\pi}{4} \times 0.3^{2} V_{2} & \frac{\pi}{4} \times 0.2^{2} V_{3}=\frac{\pi}{4} \times 0.3^{2} V_{2} \\
V_{1} & =0.562 V_{2}
\end{aligned}
$$

Sub: V_{1} and V_{3} in (1)

$$
\begin{gathered}
\Rightarrow \frac{0.5\left(0.562 V_{2}\right)^{2}}{29}+\frac{\left(2.25 V_{2}\right)^{2}}{2 g}+\frac{0.5 V_{2}{ }^{2}}{29}+\frac{0.5\left(2.25 V_{2}\right)^{2}}{29} \\
+\frac{4 \times 0.005 \times 800 \times\left(0.562 V_{2}\right)^{2}}{29 \times 0.4}+\frac{4 \times 0.005 \times 600 \times V_{2}{ }^{2}}{29 \times 0.5} \\
+\frac{4 \times 0.005 \times 300\left(2.25 V_{2}{ }^{2}\right)}{29}=15
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow \frac{0.1579 V_{2}^{2}}{29}+\frac{50625 V_{2}^{2}}{29}+\frac{0.5 V_{2}^{2}}{2 g}+\frac{2.53 V_{2}^{2}}{29} \\
& +\frac{12.63 V_{2}^{2}}{29}+\frac{40 V_{2}^{2}}{29}+\frac{151.575 V_{2}^{2}}{29}=15 \\
& \Rightarrow \frac{212.75 V_{2}^{2}}{29}=15 \\
& =>V_{2}^{2}= \\
& V_{2}^{2}=1.176 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Discharge, $\quad Q=A_{2} \times V_{2}$

$$
\begin{aligned}
& =\frac{\pi}{4} \times 0.5^{2} \times 1.17 \\
& Q=0.083 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

$\omega \cdot k \cdot T$,

$$
\begin{aligned}
& \frac{L}{d^{5}}=\frac{L_{1}}{d_{1}{ }^{5}}+\frac{L_{2}}{d_{2}^{5}}+\frac{L_{3}}{d_{3}^{5}} \\
& \frac{1700}{d 5}=\frac{800}{(0.4)^{5}}+\frac{600}{(0.3)^{5}}+\frac{300}{(0.2)^{5}}
\end{aligned}
$$

$$
\frac{1700}{d s}=78125+246913.5+937500
$$

$$
\frac{1400}{d 5}=1262538.5
$$

$$
\begin{aligned}
d^{5} & =1.3468 \times 10^{-3} \\
d & =0.2665 \mathrm{~m} \\
& =0.2665 \times 1000 \mathrm{~mm} \\
d & =66.5 \mathrm{~mm}
\end{aligned}
$$

9. A fluid of viscosity 8 poise and specific gravity 1.2 is flowing through a circular pipe of diameter 100 mm . The maximum shear stress at lie pipe wall is $210 \mathrm{~N} / \mathrm{m}^{2}$. Find:
(i) The pressure gradient.
(ii) The average velocity and
(iii) Reynold's number of flow.

Solution:
Viscosity of fluid, $\mu=8$ poise $=0.8 \mathrm{Ns} / \mathrm{m}^{2}$.
Specific gravity $=1.2$

$$
\begin{aligned}
& \text { Specific gravity }=1.2 \\
& \therefore \text { Mass density, } e=1.2 \times 1000=1200 \mathrm{~kg} / \mathrm{m}^{3} .
\end{aligned}
$$

Diameter of the pipe, $D=100 \mathrm{~mm}=0.1 \mathrm{~m}$.
Maximum shear stress, $\tau_{0}=210 \mathrm{~N} / \mathrm{m}^{2}$
(i) The pressure gradient, $\frac{\partial p}{\partial x}$:

We know that, $\tau_{0}=-\frac{\partial p}{\partial x} \cdot \frac{R}{2}$

$$
\begin{aligned}
210 & =-\frac{\partial p}{\partial x} \cdot \frac{(0.1 / 2)}{2} \\
\Rightarrow \quad \frac{\partial p}{\partial x} & =-8400 \mathrm{~N} / \mathrm{m}^{2} \text { per } m .
\end{aligned}
$$

(ii) The average velocity, \bar{u} :

We know that, $\bar{u}=\frac{1}{2} U_{m}$ ur

$$
\begin{aligned}
& =\frac{1}{2}\left[-\frac{1}{4 \mu} \cdot \frac{\partial p}{\partial x} \cdot R^{2}\right] \\
& =\frac{1}{2}\left[-\frac{1}{4 \times 0.8} \times(-8400) \times\right. \\
\bar{u} & =3.28 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

PART- C
U

1. The velocity distribution in the boundary layer is given by,
$\frac{u}{u}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}$, \& being boundary
Nov/Dec 2016
layer thickness.
calculate the following:
(i) Displacement thickness.
(ii) Momentum thickness. \&
(iii) Energy thickness.

Solution:
(i) Displacement thickness, δ^{*} :

$$
\begin{aligned}
\sigma^{\star} & =\int_{0}^{\delta}\left(1-\frac{d}{v}\right) d y \\
& =\int_{0}^{\delta}\left[1-\left\{2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}\right\}\right] d y \\
& =\int_{0}^{\delta}\left[1-2\left(\frac{y}{\delta}\right)+\left(\frac{y}{\delta}\right)^{2}\right] d y \\
& =\left[y-\frac{2}{2} \times \frac{y^{2}}{\delta}+\frac{y^{3}}{3 \delta^{2}}\right]_{0}^{\delta}
\end{aligned}
$$

$$
\delta^{*}=\delta / 3
$$

(ii) Momentum thickness, 8 :

$$
\begin{aligned}
& \theta=\int_{0}^{\delta} \frac{u}{u}\left(1-\frac{u}{u}\right) d y \\
&=\int_{0}^{\delta}\left(\frac{2 y}{\delta}-\frac{y^{2}}{\delta^{2}}\right)\left[1-\left(\frac{2 y}{\delta}-\frac{\delta^{3} y^{2}}{\delta^{2}}\right)\right] d y \\
&=\int_{0}^{\delta}\left(\frac{2 y}{\delta}-\frac{y^{2}}{\delta^{2}}\right)\left[1-\frac{2 y}{\delta}+\frac{y^{2}}{\delta^{2}}\right] d y \\
&=\int_{0}^{\delta}\left[\frac{2 y}{\delta}-\frac{4 y^{2}}{\delta^{2}}+\frac{2 y^{3}}{\delta^{3}}-\frac{y^{2}}{\delta^{2}}+\frac{2 y^{3}}{\delta^{3}}-\frac{y^{4}}{\delta^{4}}\right] d y \\
&=\int_{0}^{\delta}\left[\frac{2 y}{\delta}-\frac{5 y^{2}}{\delta^{2}}+\frac{4 y^{3}}{\delta^{3}}-\frac{y^{4}}{\delta^{4}}\right] d y \\
&=\left[\frac{2}{2} \times \frac{y^{2}}{\delta}-\frac{5}{3} \times \frac{y^{3}}{\delta^{2}}+\frac{4}{4} \times \frac{y^{4}}{\delta^{3}}-\frac{1}{5} \times \frac{y^{5}}{\delta^{4}}\right]_{0}^{\delta} \\
&=\left[\delta-\frac{\delta}{3} \delta+\delta-\frac{1}{5} \delta\right] \\
& \theta=\frac{2}{15} \\
& \delta
\end{aligned}
$$

(iii) Energy thickness, δ_{l} :

$$
\begin{aligned}
\delta_{e} & =\int_{0}^{\delta} \frac{u}{u}\left(1-\frac{u^{2}}{u^{2}}\right) d y \\
& =\int_{0}^{\delta}\left(\frac{2 y}{\delta}-\frac{y^{2}}{\delta^{2}}\right)\left[1-\left(\frac{2 y}{\delta}-\frac{y^{2}}{\delta^{2}}\right)\right] d y . \\
& =\int_{0}^{\delta}\left(\frac{2 y}{\delta}-\frac{y^{2}}{\delta^{2}}\right)\left[1-\left(\frac{4 y^{2}}{\delta^{2}}+\frac{y^{4}}{\delta^{4}}-\frac{4 y^{3}}{\delta^{3}}\right)\right] d y \\
& =\int_{0}^{\delta}\left[\frac{2 y}{\delta}-\frac{8 y^{3}}{\delta^{3}}-\frac{2 y^{5}}{\delta^{5}}+\frac{8 y^{4}}{\delta^{4}}-\frac{y^{2}}{\delta^{2}}+\frac{4 y^{4}}{\delta^{4}}+\frac{y^{6}}{\delta^{6}}-\right. \\
& \left.=\left[\frac{2 y^{5}}{\delta^{5}}\right] \frac{y^{2}}{\delta}-\frac{1}{3} \times \frac{y^{3}}{\delta^{2}}-\frac{8}{4} \times \frac{\delta^{4} y^{4}}{\delta^{3}}+\frac{12}{5} \times \frac{y^{5}}{\delta^{4}}=\frac{y^{6}}{\delta^{5}}+\frac{1}{7} \times \frac{y^{7}}{\delta^{6}}\right] \\
& =\left(\delta-\frac{\delta}{3}-2 \delta+\frac{12 \delta}{5}-\delta+\frac{\delta}{7}\right) \\
& =\frac{22 \delta}{105}
\end{aligned}
$$

UNIT -III

DIMENSIONAL ANALYSIS AND MODEL STUDIES

1. Define dimensional homogeneity.
(Nov/Dec 15,Non/Dec 11)
The dimensions of each term in an equation on both sides are equal. Thus if the dimensions of each term on both sides of an equation are the same the equation is known as dimensionally homogeneous equation
2. Derive the expression for Reynold's number? (Nov/Dec 15,12)

It is the ratio between inertia forces to the viscous force

$$
\operatorname{Re}=\rho v \mathrm{D} / \mu
$$

3. Define Mach number?
(Nov/Dec 14)
It is defined as the square root of the ratio of the inertia force of a flowing fluid to the elastic force
4. State the Buckingham's π theorem?
(Nov/Dec 12)
If there are n variables (dependent and independent) in a physical phenomenon and if these variables contain m fundamental dimensions, then these variables are arranged into ($\mathrm{n}-\mathrm{m}$) dimensionless terms called Pi terms
5. Name the methods for determination of dimensionless groups.
(Nov/Dec 11)
i) Buckinghams pi theorem
ii) Raleyritz method
6. State Froude's dimensionless number.
(May/June 14)
It is defined as the square root of the ratio of inertia force of a flowing fluid to the gravity force

$$
\mathrm{F}_{\mathrm{e}}=\sqrt{F \mathrm{i} / \mathrm{Fg}} .
$$

7. Define dynamic similarity.

Dynamic similarity is said to exist between the model and the prototype if the ratios of corresponding forces at the corresponding points in the model are the same.
8. What are the advantages of model and dimensional analysis?
(May/June 09)

1. The performance of the structure or the machine can be easily predicted.
2. With the dimensional analysis the relationship between the variables influencing a flow in terms of dimensionless parameter can be obtained.
3. Alternative design can be predicted and modification can be done on the model itself and therefore, economical and safe design may be adopted.
4. List the basic dimensional units in dimensional analysis.
(Nov/Dec 10)
5. Length(L)-meter
6. Mass(M)- kilogram
7. Time (T)- seconds

10. What are distorted models? State its merits and demerits.

(May/June 14)
A model is said to be distorted if it is not geometrically similar to its prototype. For a distorted model different scale ratios for the linear dimensions are adopted.

Merits

1. The vertical dimensions of the model can be measured accurately
2. The cost of the model can be reduced
3. Turbulent flow in the model can be maintained.

Demerits

1. The results of the distorted model cannot be directly transferred to its prototype.
2. Derive the scale ratio for velocity and pressure intensity using Froude model law. (Nov/Dec 2016)

$$
\left(F_{l}\right)_{m}=\left(F_{l}\right)_{p}^{\prime} \Rightarrow \frac{V_{m}}{\sqrt{g_{m} L_{m}}}=\frac{V_{p}}{\sqrt{S_{p} L_{p}}}
$$

Scale ratios based on froude number
(a) Scale ratio for time, $T_{r}=\frac{T_{p}}{T_{m}}=\sqrt{L_{r}}$
(b) Scale ratio for acceleration,

$$
\begin{aligned}
& a_{r}^{\prime}=\frac{V_{p}}{V_{m}} \times \frac{T_{m}}{T_{p}}=\sqrt{L_{r}} \times \frac{1}{\sqrt{L_{r}}} \\
& a_{r}=1
\end{aligned}
$$

scale ratio for pressure intensity,

$$
\begin{aligned}
p & =\frac{\text { Force }}{\text { Area }}=\frac{\rho_{L^{2}} V^{2}}{L^{2}} \\
p & =Q^{2} \\
P_{r} & =\frac{P_{P}}{\rho_{m}} \cdot \frac{V_{P}^{2}}{V_{m}^{2}}
\end{aligned}
$$

for same fluid, $P_{p}=P_{m}$

$$
\begin{aligned}
& P_{r}=\frac{V_{p^{2}}^{2}}{V_{m}^{2}}={\sqrt{L_{r}}}^{2}=L_{r} \\
& P_{r}=L_{r}
\end{aligned}
$$

1. Using Buckingham's π.theorem, show that the velocity through a circular orifice is given by $V=\sqrt{2 g H} \varphi\left[D / H \cdot \frac{\mu}{P V H}\right]$, where H is the head causing flow, D is the diameter of the orifice, u is coefficient of viscosity, P is the mass density and g is the acceleration due to gravity. (16)

Solution:
$[A P r /$ May - 2010$]$.
Given:
V is a question of H, D, μ, P and g

$$
\begin{aligned}
& V=f(H, D, \mu, P, g)(o r) \rightarrow(i) \\
& f_{1}(V, H, D, u, P, g) \rightarrow \text { (ii) }
\end{aligned}
$$

Total no. of variable; $n=6$.
dimensions of each variable,

$$
\begin{array}{lll}
V=L T^{-1} & ; & \mu=M L^{-1} T^{-1} \\
H=L & ; & P=M L^{-3} \\
D=L & ; & g=L T^{-2}
\end{array}
$$

No. of fundamental dimensions $m=3$

$$
\therefore \text { Number of } \begin{aligned}
\pi \text {-terms } & =n-m \\
& =6-3=3
\end{aligned}
$$

equation (i) can be written as $f,\left(\pi, \pi_{R}, \pi_{3}\right)=0$.
Each π-term. Contains $m+1$ variables, where $m=3$ and is also equal to repeating variables. Here V is a dependent Variable and hence should not be selected as repeating variable. Choosing H, g, P as repeating variable, We get three $\bar{\pi}$-terms as,

$$
\begin{align*}
& \pi_{1}=H^{a_{1}} \cdot g^{b_{1}} \cdot p^{c_{1}}, v . \tag{1}\\
& \pi_{2}=H^{a_{2}} \cdot g^{b_{2}} \cdot p^{c_{2}} \cdot \mathcal{D} . \tag{2}\\
& \pi_{3}=H^{a_{3}} \cdot g^{b_{3}} \cdot p^{c_{3}} \cdot M . \tag{3}
\end{align*}
$$

First T. Term :

$$
\pi_{1}=H^{a_{1}} \cdot g^{b_{1}} \cdot P^{c_{1}} \cdot v
$$

Substituting dimensions on both sides,

$$
M^{0} L^{0} T^{0}=L^{a_{1}} \cdot\left(\angle T^{-2}\right)^{b_{1}} \cdot\left(M L^{-3}\right)^{c_{1}} \cdot \angle T^{-1}
$$

Equating the power of H, L, T on both sides,
Power of $M, \quad 0=c$.
Power of $L, \quad 0=a_{1}+b_{1}-3 c_{1}+1$

$$
\begin{aligned}
a_{1} & =-b_{1}+3 c_{1}-1 \\
& =1 / 2+0-1 ; a_{1}=-1 / 2
\end{aligned}
$$

Power of T,

$$
\begin{aligned}
& 0=-2 b_{1}-1 \\
& b_{1}=-1 / 2
\end{aligned}
$$

Third T. term:

$$
\begin{aligned}
T_{3} & =H^{a_{3}} \cdot g^{b_{3}} \cdot \rho^{c_{3}}, M \\
M^{O} L^{O} T^{O} & =L^{a_{3}} \cdot\left(L T^{-2}\right)^{b_{3}} \cdot\left(M L^{-3}\right)^{c_{3}}, M L^{-1} T^{-1}
\end{aligned}
$$

Equ. the power of M,L,T on both,
Power of $M=0=C_{3}+1 ; C_{3}=-1$
Power of $L=0=a_{3}+b_{3}-3 c_{3}-1$

$$
\begin{aligned}
& a_{3}=-b_{3}+3 c_{3}+1 ; 1 / 2-3+1=-3 / 2 \\
& a_{3}=-3 / 2
\end{aligned}
$$

Power of $T=0=-2 b_{3}-1 ; \quad b_{3}=-1 / 2$
Sub. the $9, b, c$ values on π_{s} term,

$$
\begin{array}{rr}
T_{3}=H^{-3 / 2} \cdot g^{-1 / 2} \cdot P^{-1} \cdot \mu \\
T_{3}=\frac{\mu}{H^{3 / 2} \cdot P \sqrt{g}} \quad \text { (or) } & \frac{\mu}{H P \sqrt{g H}}=\frac{\mu v}{H P V \sqrt{g H}} \\
T_{3}=\frac{M}{H P V} \cdot T_{1} & \text { [Multiply \& } \div \text { by } \\
& {\left[\because \frac{V}{\sqrt{g H}}=T_{1}\right]}
\end{array}
$$

Substituting the values of $\pi, T_{2}, \pi T_{3}$ in equation (ii)

$$
\begin{align*}
& f_{1}\left(\frac{V}{\sqrt{g H}}, \frac{D}{H}, \pi_{1} \frac{\mu}{H P V}\right)=0 \tag{08}\\
& \frac{V}{\sqrt{g H}}=Q\left[D / H, T_{1} \frac{\mu}{H P V}\right] \tag{08}\\
& V=\sqrt{2 g H} \oplus\left[D / H, \frac{\mu}{P V H}\right]
\end{align*}
$$

Multiplying by a constant does not change the Character of π-terms.
2. The Power developed by hydraulic machine is found to depend on the head H, flow rate Q, density P, speed N, runner diameter D and acceleration due to gravity g. obtain suitable dimensionless
Parameters to correlate experimental results. [16]

$$
\text { [NOV/DEC - } 2014]
$$

May) June - 2012

$$
\begin{align*}
& P=f(H, Q, P, N, D, g)- \tag{0}\\
& f_{1}(P, H, Q, P, N, D, g)=0 \tag{i}
\end{align*}
$$

Total. no. of Variables $n=7$.
No- of fundamental dimensions $M=3$

$$
\begin{align*}
& \therefore \text { No. of } \pi \text {-terms }=n-m \\
& =7-3 \Rightarrow 4 \text {. } \\
& f_{1}\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right)=0 \\
& \pi_{1}=H^{a_{1}} \cdot N^{b_{1}}, P^{c_{1}} \cdot P \tag{1}\\
& \pi_{2}=H^{a_{2}} \cdot N^{b_{2}} \cdot P^{c_{2}} \cdot Q \tag{2}\\
& \pi_{3}=H^{a_{3}} \cdot N^{b_{3}} \cdot P^{c_{3}} \cdot g \tag{3}\\
& T_{4}=H^{a_{4}} \cdot N^{b_{4}} \cdot P^{c_{4}} \cdot D \tag{4}
\end{align*}
$$

dimensions of each variables.

$$
\begin{aligned}
& H=L ; \quad N=T^{-1} ; \quad P=M L^{-3} \\
& P=M L^{2} T^{-3}, \quad Q=L^{3} T^{-1}, \quad g=L T^{-2}, \quad D=L .
\end{aligned}
$$

First 7. term:

$$
\begin{equation*}
\pi_{1}=H^{a_{1}} \cdot N^{b_{1}} \cdot P^{c_{1}} \cdot P . \tag{D}
\end{equation*}
$$

applying dimensions on both sides

$$
H^{p} L^{0} T^{0}=L^{a_{1}} \cdot\left(T^{-1}\right)^{b_{1}} \cdot\left(M L^{-3}\right)^{C_{1}} \cdot M L^{2} T^{-3}
$$

Equating Power of M, L, T on both.

$$
\begin{aligned}
\text { Power of } M=0 & =c_{1}+1 ; c_{1}=-1 \\
\text { Power of } L=0 & =a_{1}-3 c_{1}+2 \\
a_{1} & =3 c_{1}-2 \\
& =-3-2 \\
a_{1} & =-5
\end{aligned}
$$

$$
\begin{array}{r}
\text { Power of } T=0=-b_{1}-3 \\
F b_{1}=-3
\end{array}
$$

Substituting $a_{1}, b_{2} c_{1}$ value in equation (1).

$$
\begin{aligned}
\pi_{1} & =H^{-5} \cdot N^{-3} \cdot P^{-1} \cdot P \\
\pi_{1} & =\frac{P}{H^{5} N^{3} \cdot}
\end{aligned}
$$

Second T_ierm:

$$
\begin{equation*}
\pi_{2}=H^{a_{2}} \cdot N^{b_{2}} \cdot P^{c_{2}}, Q \tag{2}
\end{equation*}
$$

applying dimension on both sides,

$$
M^{D} L^{0} T^{0}=(L)^{a_{2}} \cdot\left(T^{-1}\right)^{b_{2}} \cdot\left(M L^{-3}\right)^{C_{2}} \cdot L^{3} T^{-1}
$$

Equating Power of M, L, T on both sides.
Power of $M=C_{2}=0$
Power of $L=a_{2}-3 c_{2}+3=0$

$$
\begin{aligned}
& a_{2}=3 c_{2}-3 \\
& a_{2}=-3
\end{aligned}
$$

Power of $T=-b_{2}-1$

$$
b_{2}=-1
$$

Substituting a_{2}, b_{2}, c_{2} value in equation (2)

$$
\begin{gathered}
\pi_{2}^{*}=(H)^{*} \cdot N^{*} \cdot P^{*} \\
\pi_{2}=\frac{Q}{H^{3} N}
\end{gathered}
$$

Third TI. term:

$$
\begin{equation*}
\pi_{3}=(H)^{a_{3}} \cdot(N)^{b_{3}} \cdot \rho^{c_{3}} \cdot g \tag{3}
\end{equation*}
$$

applying dimension on both sides,

$$
M^{0} L^{D} T^{0}=(L)^{a_{3}} \cdot\left(T^{-1}\right)^{b_{3}} \cdot\left(M L^{-3}\right)^{c_{3}} \cdot \angle T^{-2}
$$

Power of $M=e_{3}=0$
Power of $\alpha=a_{3}-3 c_{3}+1$

$$
a_{3}=3 c_{3}-1 ; \quad a_{3}=-1
$$

Power of $T=-b_{3}-2 ; b_{3}=-2$
Substituting a_{3}, b_{3}, c_{3} value in equ (3)

$$
\begin{aligned}
& \pi_{3}=H^{-1}, N^{-2}, P^{0} \cdot g . \\
& \pi_{3}=\frac{g}{N^{2} H}
\end{aligned}
$$

Fourth iT. term:

$$
\begin{equation*}
T_{4}=(H)^{a_{4}} \cdot(N)^{b_{4}} \cdot(P)^{C_{4}} \cdot D \tag{4}
\end{equation*}
$$

applying dimension on both sides,

$$
M^{0} L^{0} T^{0}=(L)^{a_{4}} \cdot\left(T^{-1}\right)^{6_{4}} \cdot\left(H_{L}^{-3}\right)^{C_{4}} \cdot L
$$

equating the power of M, L, T on. both.
Power of $M=c_{4}=0$

$$
\text { Power of } \begin{aligned}
L & =a_{4}-3 c_{4}+1 \\
a_{4} & =0-1 \\
a_{4} & =-1
\end{aligned}
$$

Power of $T=-b_{4}=0 . \quad ; b_{4}=0$

Substituting a_{4}, b_{4}, c_{4} values on equ (4)

$$
\begin{aligned}
& \pi_{4}=H^{-1} \cdot N^{O} \cdot P^{0} \cdot D \\
& \pi_{4}=D / H
\end{aligned}
$$

Substitute π values in equation. (iii)

$$
f\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right)=0
$$

$$
\begin{aligned}
& f\left[\frac{P}{H^{5} \cdot N^{3} \cdot \rho} \cdot \frac{Q}{H^{3} \cdot N} \cdot \frac{g}{N^{2} H} \cdot \frac{D}{H}\right]=0 . \\
& \frac{P}{H^{5} \cdot N^{3} \cdot P}=Q\left[\frac{Q}{H^{3} \cdot N} \cdot \frac{g}{N^{2} \cdot H} \cdot \frac{D}{H}\right] \\
& P=H^{5} N^{3} P \quad Q\left[\frac{Q}{H^{3} \cdot N} \cdot \frac{g}{N^{2} \cdot H} \cdot \frac{D}{H}\right]
\end{aligned}
$$

3. Derive on the basis of dimensional analyst's suitable parameters to present the thrust developed by a propeller. Assume that the thrust P depends on the angular velocity w, speed of advance V, diameters D, dynamic viscosity μ, mass density P, and elasticity of the fluid medium which canbe denoted by the speed of sound in the Medium ' c '. [16]
[NOV/Dec - 2012]

Solution:
Thrust P is a function of w, V, D, M, P, C.

$$
\begin{align*}
& P=f(w, v, D, \mu, P, c) \tag{i}\\
& f_{1}(P, w, v, D, u, P, c)=0 \tag{V}
\end{align*}
$$

\therefore Total no. of variables $n=7$.
dimensions of each variable,

$$
\begin{aligned}
& \text { mentions of each variams } \\
& P=M L T^{-2} ; w=T^{-1} ; V=\angle T^{-1} ; D=L . \\
& u=M L^{-1} T^{-1} ; P=M L^{-3} ; C=L T^{-1}
\end{aligned}
$$

\therefore No. of fundamental dimensions, $m=3$.
Total. No. of π. terms $=n-m \Rightarrow 7-3$

$$
\Rightarrow 4
$$

Hence equation (1) conte written as,

$$
\begin{gather*}
f_{1}\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right)=0 \tag{ii}\\
\pi_{1}=D^{a_{1}} \cdot v^{G_{1}} \cdot P^{4} \cdot P
\end{gather*}
$$

$$
T_{2}=D^{a_{2}} \cdot v^{b_{2}} \cdot P^{c_{2}} \cdot w^{2}
$$

$$
T_{8}=D^{a_{3}} \cdot V^{b_{3}} \cdot \rho^{c_{3}} \cdot M
$$

$$
\pi_{3}=D^{a_{3}} \cdot v^{a_{4}}=D^{a_{4}} \cdot P^{c_{4}} \cdot c
$$

Finest 7 -herm;

$$
\begin{equation*}
T_{1}=D^{a_{l}} \cdot v^{b_{1}} \cdot P^{c_{1}} \cdot P \tag{1}
\end{equation*}
$$

applying dimensions on both sides,
Equating power of M, $M, 7$ on bothsides.

$$
\begin{aligned}
\text { Power of } M=0 & =c_{1}+1 ; c_{1}=-1 \\
\text { Power of } L=0 & =a_{1}+b_{1}-3 c_{1}+1 \\
a_{1} & =-b_{1}+3 c_{1}-1 \\
& =2-3-1=-2 . a_{1}=-2
\end{aligned}
$$

$$
\begin{array}{r}
\text { power of } 7=0=-b_{1}-2 \\
b_{1}=-2
\end{array}
$$

$$
b_{1}=-2
$$

Substituting the values of $a_{1}, b_{1} \& c_{1}$, in pul)

$$
\begin{aligned}
& \pi_{1}=D^{-2} \cdot V^{-2} \cdot P^{-1} \cdot P \\
& \pi_{1}=\frac{P}{D^{2} V^{2} \cdot P}
\end{aligned}
$$

Second π-term: $\pi_{2}=D^{a_{2}} \cdot v^{b_{2}} \cdot P^{c_{2}}, w$ applying dimension on both sides,

$$
M^{0} L^{0} T^{0}=L^{a_{2}} \cdot\left(L T^{-1}\right)^{b_{2}} \cdot\left(M L^{-3}\right)^{c_{2}} \cdot T^{-1}
$$

Equating the power of $M_{1} L, T$ on $60 t h$,

$$
\begin{aligned}
& \text { Equating rep } \\
& \text { Power of } M=0=c_{2} ; C_{2}=0
\end{aligned}
$$

Power of $L=0=a_{2}+b_{2}-3 c_{2}$

$$
\begin{aligned}
a_{2} & =-b_{2}+3 c_{2} \\
& =1+0=1 \\
a_{2} & =1
\end{aligned}
$$

Power of $T=0=-b_{2}-1$

$$
b_{Q}=-1
$$

Substituting the value of a_{2}, b_{2}, c_{2} in T_{2}.

$$
\begin{aligned}
& \pi_{2}=D^{1} \cdot y^{-1} \cdot \rho^{0} \cdot w \\
& \pi_{2}=\frac{D w}{V}
\end{aligned}
$$

Third T -term:

$$
\begin{equation*}
\pi_{3}=D^{a_{3}} \cdot v^{b_{3}} \cdot P^{c_{3}} \cdot \mu \tag{3}
\end{equation*}
$$

applying dimension on both,

$$
\begin{aligned}
& \text { ing dimension on both, } \\
& M^{0} L^{O} T^{\circ}=L^{a_{3}} \cdot\left(H T^{-1}\right)^{b_{3}} \cdot\left(M L^{-3}\right)^{c_{3}} \cdot M L^{-1} T^{-1}
\end{aligned}
$$

Equating the power of $M, L, S T$ on both,
Power of $M=0=c_{3}+1 ; \quad c_{3}=-1$
power of $L=0=a_{3}+b_{3}-3 c_{3}-1$

$$
\begin{aligned}
a_{3} & =-b_{3}+3 c_{3}+1 \\
& =1-3+1=-1 \\
a_{3} & =-1
\end{aligned}
$$

Power of $T=0=-b_{3}-1$

$$
b_{3}=-1
$$

Substituting the Values of $a_{3}, b_{3} \& c_{3}$ in T_{3}

$$
\mathbb{T}_{3}=D^{-1} \cdot v^{-1} \cdot P^{-1} \cdot \mu
$$

$$
T_{3}=\frac{M}{D V \rho}
$$

Fourth π. term:

$$
\pi_{4}^{m!}=D^{a_{4}} \cdot v^{b_{4}} \cdot \rho^{c_{4}} \cdot c .
$$

applying dimensions on both sides,

$$
\begin{aligned}
& \text { lying dimensions on both sides, } \\
& M^{0} L^{0} T^{0}=L^{a_{4}} \cdot\left(L T^{-1}\right)^{b_{4}} \cdot\left(M L^{-3}\right)^{-1} \cdot L T^{-1}
\end{aligned}
$$

Equating the power of M, L, T on both, sides.

$$
\begin{aligned}
& \text { Equating the } \\
& \text { Power of } M=0=c_{4}=0 \\
& \text { Power of } L=0=a_{4}+b_{4}-3 c_{4}+1 \\
& a_{4}=-b_{4}+3 c_{4}-1 \\
&=1+0-1=0 \\
& a_{4}=0
\end{aligned}
$$

power of $T=0=-64-1$

$$
b_{4}=-1
$$

Substituting the values of a_{4}, b_{4}, C_{H} in equ (4)

$$
\begin{gathered}
T_{H}=D^{0} \cdot V^{-1} \cdot P^{0}, C=C / v \\
\pi_{4}=C / V
\end{gathered}
$$

Substituting the values of $\pi_{1}, \theta_{2}, \pi_{3} \& \pi_{4}$ ineen(iii)

$$
\begin{aligned}
& f_{1}\left(\frac{P}{D^{2} v^{2} \cdot P} \cdot \frac{D u}{V}, \frac{\mu}{D v P} \cdot \frac{c}{V}\right)=0 \text { (or) } \\
& \frac{P}{D^{2} V^{2} \cdot P}=\Phi\left[\frac{D u}{V}, \frac{\mu}{D V P}, \frac{c}{v}\right] \text { (or) } \\
& P=D^{2} v^{2} P \phi\left[\frac{D u}{V}, \frac{\mu}{D V P}, \frac{C}{v}\right]
\end{aligned}
$$

4. A Pipe of diameter 1.5 m is required to transportan oil of Sp. gr. 0.90 and viscosity 3×10^{-2} poise at the rate of $3000 \mathrm{l} / \mathrm{s}$. Tests were conducted on a 15 cm dia Pipe using water at $20^{\circ} \mathrm{C}$. Find velocity s sate of f (ow in model. Viscosity of water at $20^{\circ} \mathrm{C}=0.01$ poise (16) [NOV/DEC - 2012]

Given:
Din of Prototype $\left(D_{P}\right)=1.5 \mathrm{~m}$.
$\left.\begin{array}{r}\text { Viscosity of prototype } \\ \left(u_{p}\right)\end{array}\right\}=3 \times 10^{-2} p_{0}$ ire

$$
\begin{aligned}
& Q_{p}=3000 \mathrm{l} / \mathrm{s} ; 3 \mathrm{~m}^{3} / \mathrm{s} \\
& \delta_{p}=0.9
\end{aligned}
$$

\therefore Density of Prototype $\left(P_{P}\right)=\delta_{P} * 1000$

$$
\begin{aligned}
& =0.9 \times 1000 \\
& =900 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Find:
Velocity \& rate of flow in mock.

$$
\begin{aligned}
& V_{p}=? \\
& Q_{m}=?
\end{aligned}
$$

Formula required:
Using Reynold's model law.

$$
\begin{aligned}
& \frac{P_{m} \cdot V_{m} \cdot D_{m}}{\mu_{m}}=\frac{P_{p} V_{p} D_{p}}{\mu_{p}} \\
& Q_{m}=A_{m} \times V_{m}
\end{aligned}
$$

Solution:
For pipe flow, the dynamic similarity will be obtained if the Reynold's Number in the model sp prototype are equal.
Hence 0 ring equation.,

$$
\begin{aligned}
& \frac{P_{m} V_{m} D_{m}}{\mu_{m}}=\frac{\rho_{p} v_{p} D_{p}}{\mu_{p}} \\
& \therefore \frac{V_{m}}{V_{p}}=\frac{P_{p}}{P_{m}} \cdot \frac{D_{p}}{D_{m}} \cdot \frac{\mu_{m}}{\mu_{p}} \\
& \mathcal{L} \text { for pipe, } \\
& \text { linear Dimerstion } \operatorname{CD}] \\
& =\frac{900}{1000} \times \frac{1.5}{0.15} \times \frac{1 \times 10^{-2}}{3 \times 10^{-2}} \\
& =\frac{900}{1000} \times 10 \times \frac{1}{3}=3.0 \\
& v_{P}=\frac{\text { Rate of flock in Prototype }\left(Q_{P}\right)}{\text { Area of photo type }(A P)}=\frac{3}{\pi / 4\left(D_{P}\right)^{2}} \\
& v_{p}=\frac{3}{\pi / 4(1.5)^{2}} \Rightarrow \frac{3 \times 4}{\pi \times 2.25}=1.697 \mathrm{~m} / \mathrm{s} \\
& V_{m}=3 \times v_{p} \Rightarrow 3 \times 1.697=5.091 \mathrm{~m} / \mathrm{s} \\
& \text { Rate of flow through } \left.\begin{array}{c}
\text { model }
\end{array}\right\}\left(Q_{m}\right)=A_{m} \times V_{m} \\
& \text { model }=\frac{\pi}{4}\left(D_{m}\right)^{2} \times V_{m} \\
& =\frac{\pi}{4}(0.15)^{2} \times 5.091 \\
& =0.0899 \mathrm{~m}^{3} / \mathrm{s} \\
& =0.0899 \times 1000 \mathrm{lit} / \mathrm{s} \\
& =89.9 \mathrm{lit} / \mathrm{s} .
\end{aligned}
$$

Result:
(i) Velocity of model $\left(V_{m}\right)=5.091 \mathrm{~m} / \mathrm{s}$
(ii) Rate of flow through

$$
\begin{aligned}
& \text { through } \\
& \text { model }\left(Q_{m}\right)=89.9 \mathrm{lit} / \mathrm{s} .
\end{aligned}
$$

5. The Efficiency η of a fan depends on the obesity P, the dynamic viscosity μ of the fluid. the angular velocity ur, diameter D of the rotor. and the discharge Q. Apses η interns of dimension less parameters.
use Ray (eight's method. (16)

$$
[\text { APr/May -2015] }
$$

Solution:

$$
\begin{equation*}
\eta=k \cdot P^{a} \cdot \mu^{b} \cdot \omega^{c} \cdot D^{d} \cdot Q^{c} \tag{1}
\end{equation*}
$$

Where $K=$ Non dimensional constant. dimensions of each variables.

$$
\begin{aligned}
& \text { ensions of each vac } M=M L^{-3} ; M T^{-1} ; \quad W=T^{-1} ; \\
& P T^{-1}
\end{aligned}
$$

$$
D=L \quad ; \quad Q=L^{3} T^{-1}
$$

Substituting the dimensions on both sides. In equ (1)

$$
\begin{array}{r}
M^{0} L^{0} T^{0}=K\left(M L^{-3}\right)^{a} \cdot\left(M L^{-1} T^{-1}\right)^{b} \cdot\left(T^{-1}\right)^{c} \cdot(L)^{q} . \\
\left(L^{3} \cdot T^{-1}\right)
\end{array}
$$

Power of $M, 0=a+b$
Power of $L, 0=-3 a-b+d+3 e$
Power of $T, 0=-b-c-e$
Hence expressing $a, c, \& d$ in terms of $b \& z$, weget,

$$
\begin{aligned}
a & =-b \\
b & =-(b+e) \\
d & =3 a+b-3 e \\
& =-3 b+b-3 e \\
& =-2 b-3 e
\end{aligned}
$$

Substituting a, b, d values in equation (1)
we get,

$$
\begin{aligned}
\eta & =k \cdot P^{-b}, \mu^{b} \cdot w^{-(b+e)}, D^{-2 b-3 e}, Q^{e} \\
& =k \cdot P^{-b} \cdot \mu^{b} \cdot u^{-b}, w^{-e} \cdot D^{-2 b} \cdot D^{-3 e} \cdot Q^{e}
\end{aligned}
$$

$$
\text { ut : }=k\left(\frac{\mu}{\rho \omega D^{2}}\right)^{b} \cdot\left(\frac{Q}{\omega D^{3}}\right)^{e}=Q\left[\left(\frac{\mu}{P \omega D^{2}}\right) \cdot\left(\frac{Q}{\omega D^{3}}\right)\right]
$$

Result:
6. Using Buckingham π theorem, show that 1 be velocity through a circular orifice is given by $V=\sqrt{2 g h} \phi\left[\frac{D}{H}, \frac{\mu}{e V H}\right]$, where H is the head causing flow, D is t the diameter of the orifice, μ is the coefficient of viscosity, e is 1 he mass density and g is the acceleration due to gravity.
Solution: Given: V is a function of H, D, μ, P, g April/May 2017

$$
\begin{align*}
& V=f(H, D, \mu, P, g) \\
& f_{1}(H, D, \mu, P, g,)=0 \tag{1}
\end{align*}
$$

(i) Total number of fundamental dimensions, $m=3$.
(ii) Total number of Variables, $n=6$
\therefore Number of π-terms $=n-m=6-3=3$.
Equation (1) can be curiltion as,

$$
\begin{equation*}
f_{1}\left(\pi_{1}, \pi_{2}, \pi_{3}\right)=0 \tag{2}
\end{equation*}
$$

Each π term has $\pi_{i}=3$ repeating Variables and $m_{+1}=3+1=4$ total Variables.

The repeating Variables are $H, 9, P$.
π lems can be written as,

$$
\begin{aligned}
& \pi_{1}=H^{a_{1}} g^{b_{1}} e^{c_{1}} v \\
& \pi_{2}=H^{a_{2}} g^{b_{2}} e^{c_{2}} D
\end{aligned}
$$

$$
\pi_{3}=H^{a_{3}} g^{b_{3}} \rho^{c_{3}} \mu
$$

Analysis of π terms:
First π term: $\pi_{1}=H^{a_{1}} g^{b_{1}} e^{c_{1}} V$
substituting dimensions on both sides,

$$
M^{0} L^{0} T^{0}=L^{a_{1}}\left(L T^{-2}\right)^{b_{1}}\left(M L^{-3}\right)^{c_{1}}\left(L T^{-1}\right)
$$

Equating powers of M, L, T on both sides
Power of $M, \quad 0=c \quad \therefore c_{1}=0$
Power of $L, \quad 0=a_{1}+b_{1}-3 c_{1}+1 ; \quad 0=a_{1}+b_{1}+1, \quad 0=a_{1}-\frac{1}{2}+1$
Power of $T, \quad 0=-2 b_{1}-1, \quad 2 b_{1}=-1 ; \quad b_{1}=-1 / 2, \quad a_{1}=-1 / 2$,
substituting the value of a_{1}, b_{1}, c_{1} in π_{1}

$$
\begin{aligned}
& \pi_{1}=H^{-1 / 2} g^{-1 / 2} \rho^{0} \cdot V \\
& \pi_{1}=\frac{V}{\sqrt{g+1}}
\end{aligned}
$$

second π term:
substituting dimensions on both sides,

$$
M^{0} L^{0} T^{0}=L^{a_{1}}\left(L T^{-2}\right)^{b_{1}}\left(M L^{-3}\right)^{c_{1}} L
$$

Equating powers of M, L, T on both sides
Power of $M, 0=C_{1} \Rightarrow C_{1}=0$
Power of $L, 0=a_{1}+b_{1}-3 c_{1}+1 \Rightarrow 0=a_{1}+1 \Rightarrow a_{1}=-1$
Power of $T, \quad 0=-2 b_{1} \Rightarrow b_{1}=0$
substituting

$$
\begin{aligned}
& a_{1}, b_{1}, c_{1} \text { in } \pi_{2} \\
& \pi_{2}=H^{-1} g^{0} \rho^{0} D \\
& \pi_{2}=\frac{D}{H}
\end{aligned}
$$

Third π-term:
substituting the dimensions on both sides.

$$
M^{0} L^{0} T^{0}=L^{a_{3}}\left(L T^{-2}\right)^{b_{3}}\left(M L^{-3}\right)^{C_{3}} M^{-1} T^{-1}
$$

Equating powers of M, L, T on both sides.
Power of $M, \quad 0=c_{3}+1 \Rightarrow c_{3}=-1$
Power of $L, \quad 0=a_{3}+b_{3}-3 c_{3}-1 \Rightarrow 0=a_{3}-1 / 2+2 \Rightarrow a_{3}=-1 / 2$
Pacer of $T, \quad 0=-2 b_{3}-1 \Rightarrow b_{3}=-1 / 2$
substituting the values of a_{3}, b_{3} and c_{3} in n_{3}

$$
\begin{aligned}
\pi_{3} & =H^{-s / 2} g^{-Y / 2} e^{-1} \mu \\
& =\frac{\mu}{H^{3 / 2} \sqrt{g}} \rho \\
& =\frac{\mu}{H \sqrt{H} \sqrt{g} \rho} \Rightarrow \frac{\mu}{H e \sqrt{g H}} \Rightarrow \frac{\mu}{H V^{e}} \frac{V}{\sqrt{g H}} \\
\pi_{3} & =\frac{\mu}{H V e} \cdot \pi_{1}
\end{aligned}
$$

substituting π_{1}, π_{2} and π_{3} in equation (2),
$\frac{1}{x \sqrt{2}}$.

$$
\begin{aligned}
f_{1}\left(\frac{V}{\sqrt{g H}},\right. & \left.\frac{D}{H}, \frac{\pi}{H} \frac{\mu}{H V e}\right)=0 ; \\
\frac{V}{\sqrt{g H}} & =\phi\left[\frac{D}{H}, \frac{\pi_{1}}{H V P}\right] \\
\frac{V}{\sqrt{2 g H}} & =\phi\left[\frac{D}{H}, \frac{\mu}{H V^{P}}\right] \\
V & =\sqrt{2 g H} \phi\left[\frac{D}{H}, \frac{\mu}{H V e}\right]
\end{aligned}
$$

Multiplying by a constant does not change the choacke of π-terms.
7. The pressure difference Δp in a pipe of diameter D and length l due to turbulent flow depends on the velocity V, viscosity μ, density ρ and roughness k. Using Buckingham π theorem obtain an expression for Nov/Dec 2016 Δp.

Pollution: Given.

$$
\Delta p=f(D, l, v, \mu, p, K)
$$

$$
\begin{equation*}
\Rightarrow \quad f_{1}(D, l, v, \mu, P, k, \Delta p)=0 . \tag{1}
\end{equation*}
$$

Dimensions:

$$
\begin{array}{ll}
\Delta P-M L^{-1} & T^{-2} \\
D-L & \mu-M L^{-1} T^{-1} \\
l-L & \rho-M L^{-3} \\
V-L T^{-1} & k-L
\end{array}
$$

$$
\begin{aligned}
& \text { No. of variables, } n=7 \\
& \text { No. of fundamental dimensions, } m=3
\end{aligned}
$$

$$
\text { No. of } \pi \text {-terms }=n-m=7.3
$$

Eqn. (1) can be written as. $f_{1}\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right)=0$;
त-terms: $\quad \pi_{1}=D^{a_{1}} v^{b_{1}} \rho^{c_{1}} \Delta p$

$$
\pi_{2}=D^{a_{2}} v^{b_{2}} \rho^{0_{2}} \quad l
$$

$$
\pi_{3}=D^{a_{3}} V^{b_{3}} P^{c_{3}} \mu
$$

$$
\pi_{4}=D^{a^{4}} v^{b^{4}} \rho^{c^{4}} k
$$

Results:

$$
\begin{array}{rlrl}
\pi_{1} & =\frac{\Delta p}{P v^{2}} \quad & \pi_{3}=\frac{\mu}{D v P} \\
\pi_{2} & =\frac{l}{D} \quad & \pi_{4}=\frac{K}{D} \\
\frac{\Delta p}{P v^{2}} & =\phi\left[\frac{l}{D}, \frac{\mu}{P v P}, \frac{K}{D}\right]
\end{array}
$$

PART-C

1. The aerodynamic drag of a new sports car is to be predicted at a speed of $50.0 \mathrm{mi} / \mathrm{h}$ at an air temperature of $25^{\circ} \mathrm{C}$. Automotive engineers build a one- fifth scale model of the car to test in a wind tunnel. It is winter and the wind tunnel is located in an unheated building; the temperature of the wind tunnel air is only about $5^{\circ} \mathrm{C}$. Determine how fast the engineers should run the wind tunnel in order to achieve similarity between the model and the prototype.

SOLUTION

We are to utilize the concept of similarity to determine the speed of the wind tunnel. Assumptions 1 . Compressibility of the air is negligible (the validity of this approximation is discussed later). 2. The wind tunnel walls are far enough away so as to not interfere with the aerodynamic drag on the model car. 3 . The model is geometrically similar to the prototype. 4. The wind tunnel has a moving belt to simulate the ground under the car, as in Fig. (The moving belt is necessary in order to achieve kinematic similarity everywhere in the flow, in particular underneath the car.)

Properties

For air at atmospheric pressure and at $\mathrm{T}=25^{\circ} \mathrm{C}, \rho=1.184 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=1.849 \times 10^{-5}$ kg / m.s. Similarly, at $\mathrm{T}=5^{\circ} \mathrm{C}, \rho=1.269 \mathrm{~kg} / \mathrm{m} 3$ and $\mu=1.754 \mathrm{x} 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. Since there is only one independent π in this problem, the similarity equation holds if $\pi_{2 \mathrm{~m}}=\pi_{2 \rho}$

$$
\Pi_{2, \mathrm{~m}}=\mathbf{R e}_{\mathrm{m}}=\frac{\rho_{\mathrm{m}} V_{\mathrm{m}} \mathbf{L}_{\mathrm{m}}}{\mu_{\mathrm{m}}}=\Pi_{2, \mathrm{p}}=\operatorname{Re}_{p}=\frac{\rho_{\mathrm{p}} V_{p} \mathbf{L}_{p}}{\mu_{\mathrm{p}}}
$$

which can be solved for the unknown wind tunnel speed for the model tests, Vm,

$$
V m=V p\left(\mu_{m} / \mu_{\mathrm{p}}\right)\left(\rho_{\mathrm{p}} / \rho_{\mathrm{m}}\right)\left(\mathrm{L}_{\mathrm{p}} / \mathrm{L}_{\mathrm{m}}\right)
$$

Substituting the values we have,

$$
V_{m}=221 \mathrm{~m} / \mathrm{h}
$$

Thus, to ensure similarity, the wind tunnel should be run at $221 \mathrm{mi} / \mathrm{h}$ (to three significant digits). Note that we were never given the actual length of either car, but the ratio of Lp to Lm is known because the prototype is five times larger than the scale model. When the dimensional parameters are rearranged as non-dimensional ratios (as done here), the unit system is irrelevant. Since the units in each numerator cancel those in each denominator, no unit conversions are necessary.

UNIT -V
PUMPS

1. What is meant by Cavitations?

Nov/Dec 15
It is defined phenomenon of formation of vapor bubbles of a flowing liquid in a region where the pressure of the liquid falls below its vapor pressure and the sudden collapsing of theses vapor bubbles in a region of high pressure.
2. Define Slip of reciprocating pump. When the negative slip does occur?
(Nov/Dec 15,12,May/June 14)
The difference between the theoretical discharge and actual discharge is called slip of the pump.

But in sometimes actual discharge may be higher then theoretical discharge, in such a case coefficient of discharge is greater then unity and the slip will be negative called as negative slip.
3. What is meant by NSPH?
(Nov/Dec 14,May/june 14)
Is defined as the absolute pressure head at the inlet to the pump, minus the vapour pressure head plus velocity head
4. What is indicator diagram?
(May/june 09)
Indicator diagram is nothing but a graph plotted between the pressure head in the cylinder and the distance traveled by the piston from inner dead center for one complete revolution of the crank

5. What are rotary pumps?

(May/june 11)
Rotary pumps resemble like a centrifugal pumps in appearance. But the working method differs. Uniform discharge and positive displacement can be obtained by using these rotary pumps, It has the combined advantages of both centrifugal and reciprocating pumps.
6. What is meant by Priming?
(April/may 08)
The delivery valve is closed and the suction pipe, casing and portion of the delivery pipe upto delivery valve are completely filled with the liquid so that no air pocket is left. This is called as priming.
7. Define speed ratio, flow ratio

Speed ratio: It is the ratio of peripheral speed at outlet to the theoretical velocity of jet corresponding to manometric head.

Flow ratio: It is the ratio of the velocity of flow at exit to the theoretical velocity of jet corresponding to manometric head.
8. Mention the main parts of the centrifugal pump.
(Nov/Dec 12)

1. Impeller
2. Casing
3. Suction pipe with foot valve and a strainer
4. Delivery pipe
5. What is an air vessel? What are its uses?

May/june 12,Nov/Dec 10)
It is a closed chamber containing compressed air in the top portion and liquid at the bottom of the chamber

Uses
To obtain a continuous supply of liquid at a uniform rate
To save a considerable amount of work in overcoming the frictional resistance in the suction pipe
10. Specific speed of a centrifugal pump.
(Nov/Dec 09)
It is defined as the speed of a geometrically similar pump which would deliver one cubic metre of liquid per second against a head of one metre.it is denoted by ' Ns '

PART-B

1. The cylinder bose diameter of a single-acting reciprocating pump is 150 mm and it's stroke is 300 mm . The pump runs at 50 rpm and lifts water through a height of 25 m . The delivery pipe 22 m long $\$ 100 \mathrm{~mm}$ in diameter. find the discharge and the thearitical power required to run the pump. If actual discharge $4.2 \mathrm{l} / \mathrm{s}$.
Find the percentage of slip. (16) [Nov / Dec -2012] Also determine the acceleration head at the beginning s middle of Given: the delivery stroke.
diameter $(d)=150 \mathrm{~mm}=0.15 \mathrm{~m}$
Lengthof $(\alpha)=300 \mathrm{~mm}=0.3 \mathrm{~m}$.
St hoke
speed (N) (N) r.p.m.
Height $(H)=25 \mathrm{~m}$
Length of delivery pipe $\left(l_{d}\right)=22 \mathrm{~m}$
dea. of delivery pipe $\left(d_{d}\right)=100 \mathrm{~mm}=0.1 \mathrm{~m}$
Actual discharge $\mathbb{Q}_{\text {act }}=4.2 \mathrm{l} / \mathrm{s}=0.0042 \mathrm{~m}^{3} / \mathrm{s}$.
Find:
(i) Theoretical discharge $\left(Q_{t h}\right)$
(ii) Theoretical power (P)
(iii) percentage of s $\mathrm{CiP}_{\mathrm{p}}(\%)$

Formula:
(i) $Q_{\text {th }}=\frac{A L N}{60}$
(iii) $\%$ of $s l_{p}=\left(\frac{Q_{+}-Q_{a}}{Q_{+}}\right) \times 100$
(ii) $P=\frac{P g Q \times H}{1000}$

Solution:
(i) Theoretical discharge $\left(Q_{+h}\right)$

$$
\begin{aligned}
& Q_{+h}=\frac{A L N}{60} \\
A & =\frac{T}{4}\left(d^{2}\right) \\
& =\frac{T}{4}(0.15)^{2} \\
& =0.1767 \mathrm{~m}^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& Q_{\text {th }}=\frac{0.1767 \times 0.3 \times 50}{60} \Rightarrow 0.0044175 \mathrm{~m}^{3} / \mathrm{s} \\
& Q_{t h}=4.417 \mathrm{l} / \mathrm{s} .
\end{aligned}
$$

(ii)

$$
\begin{gathered}
\text { Theoretical Power } \left.(P)=\frac{P g Q_{+\mathrm{t}} \times H}{1000} \cos \right)\left(\frac{\left(\frac{\text { Workdone }}{\sec }\right)}{1000}\right. \\
=1000 \times 9.81 \times 0.00441 \times 25 \\
\text { Power }(P)=1.0833 \mathrm{kw}{ }^{1000}
\end{gathered}
$$

(d)

$$
\begin{aligned}
& \text { Percentage of slip }(\%)=\left(\frac{Q_{\text {th }}-Q_{\text {aet }}}{Q_{\text {th }}}\right) \times 100 \\
&=\left(\frac{4.4175-4.2}{4.4175}\right) \times 100 \\
& \% 4.92 \% \\
& \% \text { of slip }=4.92 \% \\
& Q_{\text {th }}=4.417 \% \mathrm{~s} \\
& \%=1.0833 \mathrm{~kW} \\
& \% \text { of sip }=4.92 \%
\end{aligned}
$$

(iv) Acculuation head at the beginning of delivery stroke

$$
\begin{aligned}
h_{a d} & =\frac{l_{d}}{g} \times \frac{A}{a_{d}} \times w^{2} r \cdot \cos \theta \\
a_{d} & =\pi / 4(0.1)^{2}=0.007854 \\
u & =\frac{2 \pi \mathrm{~N}}{60} \Rightarrow \frac{2 \pi \times 50}{60} \Rightarrow 5.236 \mathrm{rds} \\
\omega & =5.236 \mathrm{rad} / \mathrm{s} \\
r & =42=\frac{0.3}{2} \Rightarrow 0.15 \mathrm{~m} \\
h_{a d} & =\frac{22}{9.81} \times \frac{0.01767}{0.007854} \times 5.236^{2} \times 0.15 \times \cos \theta \\
& =20.75 \times \cos \theta
\end{aligned}
$$

At the beginning of delivery stroke $\theta=0^{\circ}$ \& hence $\cos \theta=1$

$$
h_{\text {ad }}=20.75 \mathrm{~m} \quad[\because \cos \theta=1]
$$

(i) Acceleration head at the middle of delivery stroke $\theta=90^{\circ}$ and hence $\cos \theta=0$

$$
\begin{aligned}
\therefore h_{\text {ad }} & =20.75 \times 0 \\
h_{\text {ad }} & =0
\end{aligned}
$$

Result:

$$
\begin{array}{ll}
Q_{\text {th }}=4.417 \mathrm{l} / \mathrm{s} & \text { had at beginning }=20.75 \mathrm{~m} \\
P=1.0883 \mathrm{KW} & \text { had at middle }=0 \\
\% \text { of slip }=4.92 \% &
\end{array}
$$

2. A single acting reciprocating pump running at $50 \mathrm{r} . \mathrm{pm}$ delivers $0.01 \mathrm{~m}^{3} l \mathrm{sec}$ of water. The diameter of the piston is 20 cm \& 84 coke length 40 cm . Determine.
(i) The Theoretical discharge of the pump
(ii) Co-efficient of discharge.
(iii) Sip of the pump. (16) [NOV [Dec-2008]

Given:
Speed of the pump $(N)=50$ r.p.m
Actual discharge $\left(Q_{a}\right)=0.01 \mathrm{~m}^{3} / \mathrm{s}$
Dial. of Piston $(D)=200 \mathrm{~mm}=0.20 \mathrm{~m}$

$$
\text { Area } \begin{aligned}
&(A)=\frac{\pi}{4}(0.2)^{2} \\
&=0.0314 \mathrm{~m}^{2} \\
& L=400 \mathrm{~mm}=0.40 \mathrm{~m}
\end{aligned}
$$

Find:
(i) Theoretical discharge
(ii) Coefficient of discharge
(ii) slip of the pump.

Formula:

$$
\begin{aligned}
Q_{1} & =\frac{A L N}{60} \\
c_{d} & =\frac{Q_{a c t}}{Q_{t}} \\
\sup & =Q_{t h}-Q_{a c t}
\end{aligned}
$$

(1)

$$
\text { Theoretical discharge } \begin{aligned}
&\left(Q_{\text {th }}\right)=\frac{A L N}{60} \\
&= \frac{0.0314+6 \times 0.40 \times 50}{60} \\
&= 0.01047 \mathrm{~m}^{3} / \mathrm{s} .
\end{aligned}
$$

(ii) Coefficient of discharge

$$
\varepsilon_{d}=\frac{\mathbb{Q}_{\text {act }}}{Q_{\text {th }}}=\frac{0.01}{0.01047}=0.955 .
$$

(iii)

$$
\begin{aligned}
\text { sup } & =Q_{\text {th }}-Q_{\text {aet }} \\
& =0.01047-0.01 \\
& =0.00047 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Result :
(i) Theoretical Discharge $\left(Q_{\text {th }}\right)=0.01047 \mathrm{~m}^{3} / \mathrm{s}$
(ii) Coefficient of discharge $\left(C_{d}\right)=0.955$
(ii) sip of the reciprocating pump $\dot{a}=0.00047 \mathrm{~m}^{3} / \mathrm{s}$.
3. The Internal and external diameter of Impeller of a centrifugal pump are $200 \mathrm{~mm} \infty 400 \mathrm{~mm}$ respectively. The Pump is running at 1200 rpm . The vane angles of cylinder at Inlet and outlet are 20° \& 30° respectively. The water enters Impeller radially s velocity of flow is constant. Determine , workdone by Impeller per chit weight of water (16) [NOV $1 D E C$ - 20012]

Given:

$$
\begin{aligned}
& D_{1}=200 \mathrm{~mm}=0.20 \mathrm{~m} \\
& D_{2}=400 \mathrm{~mm}=0.40 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& N=1200 \mathrm{rpm} . \\
& \theta=20^{\circ} ; \varphi=30^{\circ}
\end{aligned}
$$

Find:
(i) work done by Impeller.

Formula:

$$
w=\frac{1}{g} v_{w_{2}} u_{2}
$$

Solution:

$$
\begin{aligned}
& \alpha=90^{\circ} \text { and } V_{\omega_{1}}=0 \\
& \because v_{f_{1}}=v_{f_{2}} . \\
& U_{1}=\frac{\pi \$ N}{60}=\frac{\pi \times 0.20 \times 1200}{60} \\
& U_{1}=12.56 \mathrm{~m} / \mathrm{s} \\
& U_{2}=\frac{\pi D_{2} N}{60}=\frac{\pi \times 0.40 \times 1200}{60} \\
& U_{2}=25.18 \mathrm{~m} / \mathrm{s} \\
& \tan \theta=\frac{v_{f_{1}}}{v_{1}}=\frac{v_{f_{1}}}{12.56} \\
& V_{f_{1}}=12.56 \times \tan 20^{\circ} \\
& =4.57 \mathrm{~m} / \mathrm{s} \\
& V_{f_{1}}=V_{f_{2}}=4.57 \mathrm{~m} / \mathrm{s} \\
& \tan \varphi=\frac{V_{f_{2}}}{U_{2}-V_{\omega_{2}}}=\frac{4.57}{25.13-V_{\omega_{2}}} \\
& 25.13-v_{\omega_{2}}=\frac{4.57}{\tan \varphi} \\
& 25.13-V_{\omega_{2}}=\frac{4.57}{\tan 30} \\
& V_{\omega_{2}}=25.13-7.915 \\
& V_{\omega_{2}}=17.215 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Work done by Impeller,

$$
\begin{aligned}
W & =\frac{1}{g} v_{\omega_{2}} U_{2} \\
& =\frac{17.215 \times 25.13}{9.81} \\
& =44.1 \mathrm{Nm} / \mathrm{s}
\end{aligned}
$$

Result:
Woakdone by the Impeller $=44.1 \mathrm{Nm} / \mathrm{s}$.
4. A centrifugal pump delivers water against a net head of 14.5 meters and a design speed of 1000 rpm . The Vanes are curved back to an angle of 30° with the periphery. The Impeller diameter is 300 mm and outlet width 50 mm . Determine the discharge of the pump if Manometric Efficiency is 95%

Given:
Net head $\left(\mathrm{H}_{\mathrm{m}}\right)=14.5 \mathrm{~m}$
speed $N=1000 \mathrm{Y} \cdot \mathrm{p} . \mathrm{m}$
Vane angle at outlet $\varphi=30^{\circ}$
Diameter $D_{2}=300 \mathrm{~mm}=0.30 \mathrm{~m}$
out let width $B_{2}=50 \mathrm{~mm}=0.05 \mathrm{~m}$
Manometric Efficiency. $\eta_{\text {man }}=95 \%=0.95$
Find:
Discharge of the pump $(Q)=$?
Formula:

$$
Q=\pi D_{2} B_{2} \times V_{f 2}
$$

Solution:

$$
\begin{aligned}
& \text { Tangential velocity of impeller } \\
& \text { at out tet }\left(U_{2}\right)=\frac{\pi D N}{60} \\
&=\frac{\pi \times 0.30 \times 1000}{60} \Rightarrow 15.70 \mathrm{~m} / \mathrm{s} \\
& \eta_{\text {man }}=\frac{g H_{m}}{V_{\omega 1} \times V_{2}} \quad U_{2}=15.70 \mathrm{~m} / \mathrm{s} \\
& 0.95=\frac{9.81 \times 14,5}{V_{104} \times 15.70} ; V_{\omega_{2}}=9.54 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From outlet velocity triangle, we have

$$
\begin{aligned}
\tan \varphi & =\frac{V_{f_{2}}}{u_{2}-V_{w_{2}}} \Rightarrow \tan 80^{\circ}=\frac{V_{f_{2}}}{(15.70-9.54)} \\
\tan 30^{\circ} & =\frac{V_{f_{2}}}{6.16} ; \quad \because V_{f_{2}}=6.16 \times \tan 30^{\circ} \\
V_{f_{2}} & =3.556 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Discharge of the pump $(Q)=\pi D_{2} B_{2} \times V_{f_{2}}$

$$
\begin{aligned}
= & \pi \times 0.30 \times 0.55 \times 3.55 \\
= & 0.1840 \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

Result:
Discharge of the centrifugal pump is $(Q)=0.1840 \mathrm{n}^{3} / \mathrm{s}$
5. The length is diameter of a Suction pipe of a single acting reciprocating pump are $5 \mathrm{~m} \infty 10 \mathrm{~cm}$ respectively. The pump has a plunger of diameter 15 cm ss a stroke length of 35 cm . The center of the pump is 3 m above the water surface in the pump. The atmospheric pressure head is 10.3 m of water and pump is running at 36 r.p.m (16)
Determine,
$[$ NOV $/ D E C-2011]$
(i) Pressure head due to acceleration at the beginning of the suction stroke.
(ii) Man. Pressure head due to acceleration, and.
(iii) Pressure head in the cylinder at the beginning is at the end of the stroke.
Given:
Length of suction pipe $\left(l_{s}\right)=5 \mathrm{~m}$.
Da. of suction pipe $\left(d_{s}\right)=10 \mathrm{~cm}=0.1 \mathrm{~m}$.

$$
\begin{aligned}
\therefore \text { Area }\left(a_{s}\right) & =\frac{\pi}{4}\left(d_{1}\right)^{2} \\
= & \frac{\pi}{4}(0.1)^{2}=0.007854 \mathrm{~m}^{2}
\end{aligned}
$$

Bia of plunger $D=15 \mathrm{~cm}=0.15 \mathrm{~m}$.

$$
\begin{aligned}
\therefore \text { Are of Plunger } A & =\frac{\pi}{4} D^{2} \\
& =\frac{\pi}{4} \times 0.15^{2} \\
& =0.01767 \mathrm{~m}^{2}
\end{aligned}
$$

Stroke length, $L=35 \mathrm{~cm}=0.35 \mathrm{~m}$

$$
\begin{aligned}
\therefore \text { Clank radius } r & =4 / 2 \\
& =\frac{0.35}{2}=0.175 \mathrm{~m}
\end{aligned}
$$

Suction head $\left(h_{s}\right)=3 \mathrm{~m}$
Atmospheric prestrue head, $H_{a t m}=10.3 \mathrm{~m}$ of water.
Speed $(N)=35 \mathrm{r} \cdot \mathrm{pm}$.
Angular speed of the crank is.

$$
\begin{aligned}
& w=\frac{2 \pi N}{60}=\frac{2 \pi \times 35}{60} \\
& w=3.665 \mathrm{rad} / \mathrm{s} .
\end{aligned}
$$

(i) The pressure head due to acceleration in the suction pipe

$$
h_{a_{s}}=\frac{l_{s}}{g} \times \frac{A}{a_{s}} \times w^{2} r \cos \theta
$$

At the beginning of stroke $\theta=0^{\circ}$ and hence $\cos \theta=1$

$$
\begin{aligned}
h_{\text {as }} & =\frac{l_{s}}{g} \times \frac{A}{a_{s}} \times w^{2} r \\
& =\frac{5}{9.81} \times \frac{0.01767}{0.007854} \times 3.665^{2} \times 0.175 \\
h_{\text {as }} & =2.695 \mathrm{~m}
\end{aligned}
$$

(ii) Max. pressure head due to acceluation in suction pike

$$
\begin{aligned}
\left(h_{\text {as }}\right)_{\max } & =\frac{l_{s}}{g} \times \frac{A}{a_{s}} w^{2} r . \\
\left(\text { has }_{\text {max }}\right. & =\frac{5}{9.81} \times \frac{0.01767}{0.007854} \times 3.66^{2} \times 0175 \\
& =2.695 \mathrm{~m}
\end{aligned}
$$

(iii) Pressure head in the cylinder at the beginning of the suction stroke

$$
\begin{aligned}
& =h_{s}+h_{a s} \\
& =3+2.695=5.695
\end{aligned}
$$

This presmere head in the cylinder is below the atmospheric presses head.
\therefore Absolute pressure head in the $\{$
cylinder at the beginning of $\}=\mathrm{H}_{\text {atm }}-h_{\text {as }}$ Suction stroke

$$
\begin{aligned}
& =0.3-5.695 \\
& =4.605 \mathrm{mof} \text { water (abs) }
\end{aligned}
$$

(iv) Simillarly, The pressure head in the cylindu at the end
of suction stroke.

$$
\begin{aligned}
& =h_{s}-h_{a s} \\
& =3-2.695=0.305 \mathrm{~m} \text { which u }
\end{aligned}
$$

below the atmoxperic
\therefore Absolute pressure head in the
cylinder at the end of suction stroke e $\}^{2} H_{a t m}-h_{\text {as }}$

$$
\begin{aligned}
& =10.3-0.305 \\
& =9.995 \mathrm{~m} \text { of water (abc.) }
\end{aligned}
$$

6(a) What is an air vessel? Describe the function of the air vessel for reciprocating pump with neat sketch. (8)

It is a closed chamber containing compressed air in the top portion and liquid (or water) at the bottom of the chamber. This is used to obtain a continuous supply of liquid at a uniform rate, to save a considerable amount of work in overcoming the frictional resistance in the suction and delivery pipes and to run the pump at high speed without separation.

The figure shows the single acting reciprocating pump to which air vessels are fitted to the suction and delivery pipes. The air vessels act like an
intermediate reservoir. During the first half of the stroke, the piston moves with acceleration, which means the velocity of water in the suction pipe is more than

the mean velocity and hence the discharge of water entering the cylinder will be more than the mean discharge. This excess quantity of water will be supplied from the air vessel to the cylinder in such a way that the velocity in the suction pipe below the air vessel is equal to mean velocity of flow. During the second half of the suction stroke, the piston moves with retardation and hence the velocity of flow n the suction pipe is less than the mean velocity of flow. Thus, the discharge entering the cylinder will be less than the mean discharge. The velocity of water in the suction pipe due to air vessel is equal to mean velocity of flow and discharge required in cylinder is less than the mean discharge. Thus the excess water flowing in suction pipe will be stored into air vessel, which will be supplied during the first half of the stroke.

During the second half of the delivery stroke, the piston moves with retardation and the velocity of water in the delivery pipe will be less than the mean velocity. The water already stored into the air vessel will start flowing into the delivery pipe and the velocity of flow in the delivery pipe beyond the point to which air vessel is fitted will become equal to the mean velocity. Hence the rate of flow of water in the delivery pipe will be uniform.

6(b) Draw and discuss the characteristic curves of centrifugal pumps. (8)

Main characteristic curves

The main characteristic curves of a centrifugal pump consists of variation of head H_{m}, power and discharge with respect to speed. For plotting curves of manometric head versus speed, discharge, is kept constant. For plotting curves of discharge versus speed, manometric head H_{m} is constant

For plotting the graph of H_{m} versus speed N , the discharge is kept constant. From equation $\mathrm{H} \alpha \mathrm{N}^{2}$.this means that head developed by pump is proportional to the N^{2} hence the curve is a parabolic curve. $\mathrm{P} \alpha \mathrm{N}^{3}$. This means the curve is a cubic curve $\mathrm{Q} \alpha \mathrm{N}$ hence it is a straight line.

Operating characteristic curves

If the speed is kept constant. The variation of manometric head, power and efficiency with respects to the discharge gives the operating characteristics of the pump.

The input curve for pumps shall not pass through the origin. It will be slightly away from the origin on the y-axis, as even at zero discharge some power is needed to overcome mechanical losses.

The head curve will have maximum value of head when discharge is zero.
The output power curve will start from origin as at $\mathrm{Q}=0$, output power will be zero.

The efficiency curve will start from the origin as at $Q=0, \eta=0$

Constant Efficiency Curves

For obtaining constant efficiency curves for the pump, the head versus discharge curves and efficiency versus discharge curves for different speed are used. Fig shows the head versus discharge curves for different speeds. The efficiency versus discharge curves for the different speeds are as shown in Fig. by

combining these curves ($\mathrm{H}-\mathrm{Q}$ curves and $\eta-\mathrm{Q}$ curves), constant efficiency curves are obtained

For plotting the constant efficiency curves (also known as iso -efficiency curves), horizontal lines representing constant efficiencies are drawn on the $\eta-Q$ curves. The points, at which these lines cut the efficiency curves at various speed, are transferred to the corresponding $\mathrm{H}-\mathrm{Q}$ curves. The points having the same efficiency are then joined by smooth curves. These smooth curves represent the iso efficiency curves.
7. Discuss the working of gear pump with its schematic (April/May 2017)

Gear pump-Schematic

Gear pump is a robust and simple positive displacement pump. It has two meshed gears revolving about their respective axes. These gears are the only moving parts in the pump. They are compact, relatively inexpensive and have few moving parts. The rigid design of the gears and houses allow for very high pressures and the ability to pump highly viscous fluids. They are suitable for a wide range of fluids and offer selfpriming performance. Sometimes gear pumps are designed to function as either a motor or a pump. These pump includes helical and herringbone gear sets (instead of spur gears), lobe shaped rotors similar to Roots blowers (commonly used as superchargers), and mechanical designs that allow the stacking of pumps.

Construction:

One of the gears is coupled with a prime mover and is called as driving gear and another is called as driven gear. The rotating gear carries the fluid from the tank to the outlet pipe. The suction side is towards the portion whereas the gear teeth come out of the mesh. When the gears rotate, volume of the chamber expands leading to pressure drop below atmospheric value. Therefore the vacuum is created and the fluid is pushed into the void due to atmospheric pressure. The fluid is trapped between housing and rotating teeth of the gears. The discharge side of pump is towards the portion where the gear teeth run into the mesh and the volume decreases between meshing teeth. The pump has a positive internal seal against leakage; therefore, the fluid is forced into the outlet port. The gear pumps are often equipped with the side wear plate to avoid the leakage. The clearance between gear teeth and housing and between side plate and gear face is very important and plays an important role in preventing leakage. In general, the gap distance is less than 10 micrometers.

8. Derive the expression for pressure head due to acceleration in the suction and delivery pipes of the reciprocating pumps. (Nov/Dec 2016)

The piston in the reciprocating pump has to move from rest when it starts the suction stroke. Hence it has to accelerate. The water in the suction pipe which is also not flowing at this point has to be accelerated. Such acceleration results in a force which when divided by area results as pressure. When the piston passes the mid-point, the velocity gets reduced and so there is retardation of the piston together with the water in the cylinder and the pipe. This again results in a pressure. These pressures are
called acceleration pressure and is denoted as head of fluid ($\mathrm{h}=\mathrm{P} / \mathrm{\rho g}$) for convenience.

Configuration of piston crank
Let ω be the angular velocity.
Then at time t , the angle travelled $\theta=\omega \mathrm{t}$
Distance $\mathrm{x}=\mathrm{r}-\mathrm{r} \cos \theta=\mathrm{r}-\mathrm{r} \cos \omega \mathrm{t}$
Velocity at this point,

$$
\begin{equation*}
V=\frac{d x}{d t}=\omega r \sin \omega t \tag{1}
\end{equation*}
$$

The acceleration at this condition

$$
\begin{equation*}
x=\frac{d x}{d t}=\omega^{2} r \cos \omega t \tag{2}
\end{equation*}
$$

This is the acceleration in the cylinder of area A . The acceleration in the pipe of area a
is,

$$
\begin{equation*}
={ }_{a}^{4} \omega^{2} r \cos \omega t \tag{3}
\end{equation*}
$$

Accelerating force $=$ mass \times acceleration
Mass in the pipe $=\rho$ al $=\frac{\gamma a l}{\mathrm{~g}}$
Acceleration force $=\frac{\gamma a l}{\mathrm{~g}} x \frac{A}{a} \omega^{2} r \cos \omega t$

$$
\begin{aligned}
\text { Pressure } & =\text { force/area } \\
& =\frac{\gamma a l}{\mathrm{~g}} x \frac{1}{a} x \frac{A}{a} \omega^{2} r \cos \omega t \\
& =\frac{\gamma l}{\mathrm{~g}} x \frac{A}{a} \omega^{2} r \cos \theta
\end{aligned}
$$

$$
\text { Head }=\text { Pressure } / \gamma
$$

$$
\begin{equation*}
\mathbf{h}_{\mathbf{d}}=\frac{l}{g} \times \frac{A}{a} m^{2} r \cos \theta \tag{5}
\end{equation*}
$$

This head is imposed on the piston in addition to the static head at that condition.
PART - C

1. In a single acting reciprocating pump with plunger diameter of 120 mm and stroke of 180 mm running at 60 rpm , an air vessel is fixed at the same level as the pump at a distance of 3 m . The diameter of the delivery pipe is 90 mm and the length is 25 m . Friction factor is 0.02 . Determine the reduction in accelerating head and the friction head due to the fitting of air vessel.

Without air vessel:

$$
\begin{aligned}
\mathbf{h}_{\mathbf{d}} & =\frac{l}{g} \times \frac{A}{a} m^{2} r=\frac{25}{9.81} \times \frac{0.12^{2}}{0.09^{2}} \frac{(2 \pi \times 60)^{2}}{60} \times 0.09 \\
& =16.097 \mathrm{~m}
\end{aligned}
$$

With air vessel:

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{ad}}^{\prime}=\frac{3}{9.81} x \frac{0.12^{2}}{0.09^{2}}\left(\frac{2 \pi x 60}{60}\right)^{2} x 0.09=1.932 \mathrm{~m} \\
& \text { Reduction }=16.097-1.932=14.165 \mathrm{~m}
\end{aligned}
$$

Fitting air vessel reduces the acceleration head.
Without air vessel:

$$
\text { Friction head, } \mathrm{h}_{\mathrm{f}}=\frac{4 f l v^{2}}{2 a d}=\frac{4 f l}{2 \mathrm{~g} d}\left(\frac{A}{a} \omega r \sin \theta\right)^{2}
$$

At $\theta=90^{\circ}$,

$$
\mathrm{h}_{\mathrm{fmax}}=\frac{4 \times 0.02 \times 25}{2 \times 9.81 \times 0.09}\left(\frac{0.12}{0.09} \frac{2 \pi \times 60}{60} \times 0.09 \times 1\right)^{2}=\mathbf{1 . 1 4 5 m}
$$

With air vessel, the velocity is constant in the pipe.

$$
\begin{aligned}
& \text { Velocity, } \mathrm{V}=\frac{L A N}{60} \times \frac{4}{\pi d^{2}}=\frac{\pi \times 0.12^{2}}{4} \times \frac{0.18 \times 60 \times 4}{60 \times \pi \times 0.09^{2}}=\mathbf{0 . 1 0 2} \mathrm{m} / \mathrm{s} \\
& \text { Friction head, } \mathrm{h}_{\mathrm{f}}=\frac{4 \times 0.02 \times 25 \times 0.102^{2}}{2 \times 9.81 \times 0.09}=0.012 \mathrm{~m}
\end{aligned}
$$

Percentage saving over maximum, $=\frac{1.145-0.012}{1.145} \times 100=99 \%$
Thus, Air vessel reduces the frictional loss.

UNIT -IV

TURBINES

1. Define volumetric efficiency?
(Nov/Dec14), (Nov/Dec15)
It is defined as the volume of water actually striking the buckets to the total water Supplied by the jet
2. Write short notes on Draft tube? (Nov/Dec15)

It is a gradually increasing area which connects the outlet of the runner to the tail race. It is used for discharging water from the exit of the turbine to the tail race.
3. How are hydraulic turbine classified? (May/june14,April/May 11)

1. According to the type of energy
2. According to the direction of flow
3. According to the head at inlet
4. According to the specific speed of the turbine
5. What is mean by hydraulic efficiency of the turbine? (Nov/Dec13,12)

It is ratio between powers developed by the runner to the power supplied to the water jet
5. Define specific speed of the turbine (April/may 08, May/June 07)

The speed at which a turbine runs when it is working under a unit head and develop unit power
6. What is meant by governing of a turbine?

It is defined as the operation by which the speed of the turbine is kept constant under all conditions of working. It is done by oil pressure governor.
7. List the important characteristic curves of a turbine
a. Main characteristics curves or Constant head curves
b. Operating characteristic curves or Constant speed curves
c. Muschel curves or Constant efficiency curves
8. Define gross head and net or effective head.

Gross Head: The gross head is the difference between the water level at the reservoir and the level at the tailstock.

Effective Head: The head available at the inlet of the turbine
9. What is the difference between impulse turbine and Reaction turbine?
(April/May 2011,08)

S.No	Reaction turbine	Impulse turbine
1.	Blades are in action at all the time	Blades are only in action when they are in front of nozzle
2.	Water is admitted over the circumference the wheel	Water may be allowed to enter a part or whole of the wheel circumference

10. Give example for a low head, medium head and high head turbine
(Nov/Dec 09)
Low head turbine - Kaplan turbine
Medium head turbine - Modern Francis
High head turbine - Pelton wheel
11. Explain the type of flow in Francis turbine? (Nov/Dec 2016)

The type of flow in Francis turbine is inward flow with radial discharge at outlet.
12. How do you classify turbine based on flow direction and working medium? (April/May 2017)

According to the direction of flow turbines are classified into
(i) Tangential flow turbine
(ii) Radial flow turbine
(iii) Axial flow turbine
(iv) Mixed flow turbine

According to the working medium turbines are classified into
(i) Gas turbine
(ii) Water turbine
(iii) Steam turbine

PART-B

1. A Piton wheel has a mean bucket speed of 10 metres per second. with a jet of water flowing at rate of $700 \mathrm{l} / \mathrm{s}$. Under a head of 30 meters. The bucket deflect the jet through an angle 160. Calculate power again by rummer and hydraulic efficiency of turbine. Assume co. efficient of velocity as 0.98 . (16)
[NOV/DEC - 2012]
Given:

$$
\begin{aligned}
& U=O_{1}=U_{2}=10 \mathrm{~m} / \mathrm{s} \\
& Q=700 \mathrm{l} / \mathrm{s}=0.7 \mathrm{~m}^{3} / \mathrm{s} \\
& H=30 \mathrm{~m} \\
& Q=180^{\circ}-160^{\circ}=20^{\circ} \\
& C_{V}=0.98
\end{aligned}
$$

Find:
(i) Power given to turbine $(P)=$?
(ii) Hydraulic Efficiency of turbine $\left(\eta_{h}\right)=$?
formula:
(i) Power $=\frac{\text { Work done by the jet/second }}{1000} k w$
(ii) Hydraulic Aficiency $\left(\eta_{h}\right)=\frac{2\left[V_{\omega_{1}}+V_{\omega_{2}}\right] \times U}{\left(V_{1}\right)}$

Solution: (i) The velocity of jet $V_{1}=c_{v} \sqrt{2 g t}$.

$$
\begin{aligned}
V_{1} & =c_{v} \sqrt{2 g t} \\
& =0.98 \sqrt{2 \times 9.81 \times 30} \Rightarrow \\
V_{1} & =23.77 \mathrm{~m} / \mathrm{s} \\
V_{r_{1}} & =V_{1}-\# u_{1} \\
V_{r_{1}} & =\%, 23.77-10 \Rightarrow 13.77 \mathrm{~m} / \mathrm{s} . \\
V_{r_{1}} & =18.77 \mathrm{~m} / \mathrm{s} \\
V_{\omega_{1}}=V_{1} & =23.77 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From out let velocity triangle,

$$
\begin{aligned}
V_{\gamma_{2}} & =V_{r_{1}}=13.77 \mathrm{~m} / \mathrm{s} \\
V_{w_{2}} & =V_{r_{2}} \cos \varphi-u_{2} \\
& =13.77 \cos 20^{\circ}-10.0 \\
V_{w_{2}} & =2.94 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(ii) Work done by the jet per second on the runner is given by equation.

$$
\begin{aligned}
& =P_{a} V_{1}\left[v_{w_{1}}+v_{w_{2}}\right] \times u \\
& =1000 \times 0.7 \times[23.77+2.94] \times 10 \\
& =186970 \mathrm{Nm} / \mathrm{s} \quad\left[\because a v_{1}=Q=0.7 \mathrm{~m}^{3} / \mathrm{s}\right]
\end{aligned}
$$

(clue)

$$
\begin{gathered}
\text { Power given to turbine }=\frac{\text { work done } / \mathrm{sec}}{c 000} \text { kw } \\
\Rightarrow \frac{186970}{1000} \\
\Rightarrow 186.97 \mathrm{~kW} .
\end{gathered}
$$

(iv) The hydraulic Efficiency of the $\}=\frac{2\left[V_{w_{1}}+V_{w_{2}}\right] \times u}{\left(V_{1}\right)^{2}}$

$$
\begin{aligned}
&\left(\eta_{h}\right) \\
& \Rightarrow \frac{2[28.77+2.94] \times 10}{(23.77)^{2}} \\
& \Rightarrow 0.9454(0 x) 94.54 \%
\end{aligned}
$$

Result:
$\left.\begin{array}{l}\text { (c) Power given to } \\ \text { turbine }(P)\end{array}\right\}=186.97 \mathrm{Kw}$
(ii) The hydraulic efficiency $=94.54 \%$ of the turbine $\left(\eta_{h}\right)$
2. In an Inward radial frow turbine, water enters at an angle of 22° to wheel tangent to outer rim and leaves at $3 \mathrm{~m} / \mathrm{s}$. Inner diameter 300 mm s outer tia 600 mm . Speed is 300 rpm . The discharge through the runner radial.

Find the, (i) Inlet s outlet blade angles,
ii) Taking Inlet width as 150 mm . Find power developed by the turbine. (16)

Given:

$$
\mathcal{L A P r} / \text { may- } 2010]
$$

Guide blade angles $\alpha=22^{\circ}$.
velocity of flow $V_{f_{1}}=V_{f_{2}}=3 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
& D_{1}=300 \mathrm{~mm} ; 0.3 \mathrm{~m} \\
& D_{2}=600 \mathrm{~mm} ; 0.6 \mathrm{~m} \\
& N=300 \mathrm{rpm} \\
& \beta=90^{\circ} \text { \& } V_{w_{2}}=0
\end{aligned}
$$

Inlet width $\left(\beta_{1}\right)=150 \mathrm{~mm}=0.15 \mathrm{~mm}$.

Find:
(i) Inlet ss out let blade angles.
(ii) Power developed by the turbine.

Formula :
(i) Inlet s outlet velocity triangles

$$
\begin{aligned}
& \text { Inlet }(\tan \theta)=\frac{V_{f}}{V_{w_{1}}-u l} \\
& \text { velocity triangle }
\end{aligned}
$$

$$
\text { outlet velocity triangle }(\tan \phi)=\frac{V_{f 2}}{\mu}
$$

(ii) power developed $(P)=\frac{\text { work done per second }}{1000} K \omega$.
sola:
Tangential velocity of wheel at Inlet.

$$
\begin{aligned}
& u_{1}=\frac{\pi D_{1} N}{60}=\frac{\pi \times 0.3 \times 300}{60} \\
& u_{1}=4.71 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Tangential velocity of wheel at outlet.

$$
\begin{aligned}
& u_{2}=\frac{\pi D_{2} N}{60}=\frac{\pi \times 0.6 \times 300}{60} \\
& u_{2}=9.43 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Absolute velocity of water at Inlet.

$$
v_{1}=\frac{v_{f_{1}}}{\sin \alpha}=\frac{3}{\sin 22}=8.0084 \mathrm{~m} / \mathrm{s}
$$

Velocity of whee at Inlet.

$$
\begin{aligned}
& V_{\omega_{1}}=v_{1} \cos \alpha=8.0084 \times \cos 22 \\
& V_{\omega_{1}}=7.4253 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The Discharge $Q=\pi D_{1}, V_{f}$,

$$
=\pi \times 0.3 \times 0.15 \times 3
$$

$$
=0.4241 \mathrm{~m}^{3} / \mathrm{s}
$$

For runner blade angles:
From Inlet velocity triangles,

$$
\tan \theta=\frac{v_{f 1}}{v_{w 11}-u_{1}}=\frac{3}{7.4253-4.71}
$$

$$
\begin{aligned}
\tan \theta & =1.1048 \\
\theta & =47.85^{\circ}
\end{aligned}
$$

From outlet velocity triangles,

$$
\begin{aligned}
\tan \varphi=\frac{v_{f_{2}}}{\mu} & =\frac{3}{9.43} \\
& =0.3181 . \\
\varphi & =\tan ^{-1}(0.3181) \\
\varphi & =17.65^{\circ}
\end{aligned}
$$

Power developed,

$$
\begin{aligned}
P & =\frac{P Q\left(v_{\omega} \times u_{1}\right)}{1000} \\
& =\frac{1000 \times 0.4241(7.4253 \times 4.71)}{1000} \\
P & =14.83 \mathrm{kw}
\end{aligned}
$$

Result:
(i) Inlet velocity triangle $\left.\begin{array}{r} \\ \theta\end{array}\right\}=47.85^{\circ}$ outlet velocity triangle

$$
\phi=17.65^{\circ}
$$

(i) Power developed $(P)=14.83 \mathrm{kw}$.
3. A Kaplan turbine working Under a head of 20 m developer 15 MW brake. The hub diameter 1.5 M .
runner diameter is 4 m . The guide blade angle $\eta_{h}=0.9 \& \eta_{0}=0.8$ Find runner vane angles $\&$ turbine speed. [16] [APr/may-2010]

Solution:

$$
\begin{aligned}
& H=20 \mathrm{~m} \\
& P=15 \mathrm{MW}=15000 \mathrm{KW} \\
& D_{0}=4 \mathrm{~m} \\
& D_{b}=1.5 \mathrm{~m} \\
& \alpha=30^{\circ} \\
& \eta_{h}=0.9=90 \% \\
& \eta_{0}=0.8=80 \% \\
& B=90^{\circ} \& V_{\omega_{2}}=0
\end{aligned}
$$

Find :

$$
\theta=?
$$

vane angles $\varphi=$?
turbine speed $N=$?

Formula :
(i) $\eta_{0}=\frac{\text { Shaft power }}{\text { water power }}=\frac{S \cdot P}{P g Q H}$.

$$
\eta_{0}=0.80
$$

(d) vane angles $\tan \alpha=\frac{V_{f 1}}{V_{\omega_{1}}}$

$$
\tan \varphi=\frac{v_{f_{2}}}{u_{2}} ; \quad \tan \theta=\frac{v_{f 1}}{v_{w_{1}}-u_{1}}
$$

(iii) ni speed of the turbine $N=$?

Solution:

$$
\eta_{0}=\frac{s \cdot P}{P g Q H}
$$

we know than

$$
\begin{aligned}
Q & =\frac{\pi}{4}\left(D_{a}^{2}-D_{b}^{2}\right) \times V_{f 1} \\
95.56 & =\frac{\pi}{4}\left(4^{2}-1.5^{2}\right) \times V_{f 1} \\
V_{f 1} & =8.8487 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

From Inlet velocity triangle

$$
\begin{aligned}
& \tan \alpha=\frac{V_{f 1}}{V_{w_{1}}} \\
& \tan 30^{\circ}=\frac{8.8487}{V_{w 1}} \\
& V_{w_{1}}=15.33 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\text { Hydraulic Efficiency } \eta_{h} & =\frac{v_{w_{1} u_{1}}}{g H} \\
0.9 & =\frac{15.33 \times u_{1}}{9.81 \times 20} \\
u_{1} & =11.5180 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =\frac{V_{f 1}}{V_{w_{1}}-u_{1}} \\
& =\frac{8.8487}{(5.33-11.5)} \\
& =2.8216
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =2.3216 \\
\theta & =\tan ^{-1}(2.3216) \\
& =66.69 \\
\theta & =66.69^{\circ}
\end{aligned}
$$

For Kaplan turbine,

$$
\begin{gathered}
\text { turbine, } u_{1}=u_{2}=11.518 \mathrm{~m} / \mathrm{s} \\
V_{f_{1}}=v_{f_{2}}=8.8487 \mathrm{~m} / \mathrm{s} \\
\tan \varphi=\frac{V_{\delta_{2}}}{u_{2}}=0.7682 . \\
\varphi=\tan ^{-1}(0.7682)=37.53 .
\end{gathered}
$$

$$
\begin{aligned}
u_{1} & =\frac{\pi D N}{60} \\
(1.5) & =\frac{\pi \times 4 \times N}{60} \\
N & =54.997 \mathrm{rpm}
\end{aligned}
$$

Result:

$$
\begin{aligned}
& \theta=66.69^{\circ} \\
& \varphi=37.53^{\circ} \\
& N=54.997 \mathrm{rpm}
\end{aligned}
$$

4. A Francis turbine developing 16120 KW Order head of 260 m runs at 600 rpm . The runner outside diameter is 1500 mm so the width is 135 mm . The flow rater is $7 \mathrm{~m}^{3} / \mathrm{s}$. The exit velocity at the draft tube out let is $16 \mathrm{~m} / \mathrm{s}$. Assuming zero whirl velocity at exit. and neglecting blade thickness. determine the overall is hydraulic Efficiency is rotor blade angle at Inlet. Also find the Guide vane outlet angle. (16) [NOV/Dec-2014]

Given:

$$
\begin{aligned}
& P=16120 \mathrm{k} \mathrm{\omega} ; H=260 \mathrm{~m} ; N=600 \mathrm{rpm} \\
& D_{2}=1.5 \mathrm{~m} ; B=0.135 \mathrm{~m} ; Q=7 \mathrm{~m}^{3} / \mathrm{s} . \\
& V_{2}=V_{f_{2}}=16 \mathrm{~m} / \mathrm{s} ; V_{\omega_{2}}=0 .
\end{aligned}
$$

To find:

$$
\begin{aligned}
\eta_{0}=? & ; \quad \eta_{h}=? \\
\alpha: ? & \quad \varphi=?
\end{aligned}
$$

Solution:

$$
\begin{aligned}
u_{1}=\frac{\pi D_{1} N}{60} & =\frac{\pi \times 1.5 \times 600}{60} \\
& =47.12 \mathrm{~m} / \mathrm{s} \\
\text { Power developed }(P) & =\frac{P Q v_{w_{1}} u_{1}}{1000} \\
\because \quad 16120 & =\frac{1000 \times 7 \times v_{w} \times 47.12}{1000} \\
v_{\omega_{1}} & =48.86 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\eta_{0}=\frac{S \cdot P}{\omega \cdot P} & =\frac{S \cdot P}{P Q Q H} \\
& =\frac{16120}{1000 \times 9.81 \times 7 \times 260 .} \\
\eta_{0} & =90 \%
\end{aligned}
$$

$$
\begin{aligned}
\tan \alpha & =\frac{V_{f 1}}{V_{w 1}} \\
Q & =\pi D_{1} B_{1} V_{f 1} \\
7 & =\pi \times 1.5 \times 0.135 \times V_{f 1} \\
V_{f 1} & =11 \mathrm{~m} / \mathrm{s} \\
\tan \alpha & =\frac{11}{48.86}=0.225 \\
\alpha & =\tan ^{-1}(0.225)=12.68^{\circ}
\end{aligned}
$$

$D_{1}=2 D_{2}$ (Assume most of the case)

$$
\begin{aligned}
& D_{2}=\frac{1.5}{2}=0.75 \\
& u_{2}=\frac{\pi 7 D}{60}=\frac{\pi \times 0.75 \times 600}{60}=23.56 \mathrm{~m} / \mathrm{s} \\
& \tan \varphi=\frac{18}{23.56}=0.679 \\
& \varphi\left.=\tan ^{-1}(0.679)=34^{\circ} \frac{18}{}\right) \\
&\left.\varphi=34^{\circ} 18\right) \\
& \eta_{0}=90 \% ; \eta_{h}=90.2 \% ; \alpha=12.68^{\prime} \\
& \varphi=34^{\circ} 18^{\prime}
\end{aligned}
$$

Penult:

5. With a neat sketch, explain the construction and working of Pelton wheel.
 [APR./MAY 2008]

Pelton turbine is a tangential flow impulse turbine. It is named after L.A.Pelton, an American engineer. This turbine is used for high heads.

MAIN PARTS:

1. Nozzle and flow regulating valve
2. Runner and buckets
3. Casing
4. Breaking jet

1. Nozzle and flow regulating valve

The nozzle increases the kinetic energy of water flowing through the penstock. At the outlet of the nozzle, the water comes out in the form of jet and strikes the bucket of the runner. The amount of water striking the buckets of the runner is controlled by providing a spear in the nozzle. The spear is a conical needle which can be operated manually. When the spear is pushed forward or backward into

the nozzle the amount of water striking the runner is reduced or increased.

2. Runner and buckets

The runner consists of a circular disc with a number of bucket evenly spaced round its periphery. The shape of the bucket is of semi ellipsoidal cups. Each bucket is divided into two symmetrical parts by a dividing which is known as splitter. The splitter divides the jet into two equal parts and the jet comes out at the outer edge of the bucket.

The bucket is made up of cast iron, cast steel bronze or stainless steel depending upon the head at the inlet of the turbine.

3. Casing:

The function of casing is to prevent the splashing of the water and to discharge water to tail race. It also acts as a safeguard against accident.

It is made up of cast iron or fabricated steel plates.

4. Breaking jet:

When the nozzle is completely closed by moving the spear in the forward direction, the amount of water striking the runner reduces to zero. But the runner due to inertia goes on revolving for a long time. To stop the runner in a short time, a small nozzle is provided which directs the jet of water on the back of the vanes. This jet of water is called breaking jet.

Working:

The water from the reservoir flows through the penstocks at the outlet of which a nozzle is fitted. The nozzle increases the kinetic energy of water flowing through the penstock. At the outlet of the nozzle, the water comes out in the form of jet and strikes the bucket of the runner.

The water flows along the tangent to the path of rotation of the runner. The runner revolves freely in air. The water is in contact with only a part of the runner at a time, and throughout its action on the runner and in its subsequent flow to the tail race, the water is at atmospheric pressure. Casing is to prevent the splashing of the water and to discharge water to tail race.

Pelton turbine.

6. Draw the characteristic curves of the turbines. Explain the significance?

Characteristics curves of a hydraulic turbine are the curves, with the help of which the exact behavior and performance of the turbine under different working conditions can be obtained. These curves are plotted from the results of the tests performed on the turbine.

The important parameters which are varied during a test on a turbine:
1.Speed (N) 2.Head(H)
3. Discharge(Q)
4.Power(P)
5.overall deficiency $\left(\eta_{o}\right)$
6. Gate opening

Speed (N), Head(H), Discharge(Q) are independent parameters. One of the parameters are kept constant and the variation of the other four parameters with respect to any one of the remaining two independent variables are plotted and various curves are obtained. These curves are called characteristics curves. The following are the important characteristic curves of a turbine.

1. Main characteristics curves or constant head curves.
2. Operating characteristics curves or constant speed curves
3. Muschel curves of constant efficiency curves

MAIN CHARACTERISTICS CURVES OR CONSTANT HEAD CURVES.

Main characteristics curves are obtained by maintaining a constant head and a constant gate opening on the turbine. The speed of the turbine is varied by changing load on the turbine. For each value of the speed , the corresponding values of the power (P) and discharge (Q) are obtained. Then the overall
efficiency (η_{o}) for each value of the speed is calculated. From these readings the values of unit speed $\left(N_{u}\right)$, unit power $\left(P_{u}\right)$, and unit discharge $\left(Q_{u}\right)$ are determined. Main characteristics curves of a Pelton wheel as shown below.

Main characteristic curves for a Pelton wheel. Main characteristics of a Kaplan and reaction turbine as shown below.

Main characteristic curves for reaction turbine.

OPERATING CHARACTERISTICS CURVES OR CONSTANT SPEED CURVES :

Operating Characteristics Curves are plotted when the speed on the turbine is constant. There are three independent parameters namely N, H and Q . For operating characteristics N and H are constant and hence the variation of
power and efficiency with respect to discharge Q are plotted. The power curve for turbines shall not pass through the origin because certain amount of discharge is needed to produce power to overcome initial friction. Hence the power and efficiency curves will be slightly away from the origin on the x -axis as to overcome initial friction certain amount of discharge will be required.

Operating characteristic curves.

MUSCHEL CURVES OF CONSTANT EFFICIENCY CURVES :

These curves are obtained from the speed Vs efficiency and speed Vs discharge curves for different gate openings. For a given efficiency, from the N_{u} vs η_{o} curves, there are two speeds. From the N_{u} vs Q_{u} curves, corresponding to two values of speeds there are two values of discharge. If the efficiency is maximum there is only one value. These two values of speed and two values of discharge corresponding to a particular gate opening are plotted.

The procedure is repeated for different gate opening and the curve Q vs N are plotted. The points having the same efficiency are iso-efficiency curves. These curves are useful to determine the zone of constant efficiency and for predicting the performance of the turbine at various efficiencies.

Horizontal lines representing the same efficiency are drawn on the η_{0} speed curves. The points at which these lines cut the efficiency curves at various gate opening are transferred to the corresponding Q- speed curves. The points having the same efficiency are then joined by smooth curves. These smooth curves represent the iso-efficiency curve.

Constant efficzency curve.

7. Explain the working of Kaplan turbine. Construct its velocity triangles.

(Nov/Dec 2016)
The popular axial flow turbines are the Kaplan turbine and propeller turbine. In propeller turbine the blades are fixed. In the Kaplan turbines the blades are mounted in the boss in bearings and the blades are rotated according to the flow conditions by a servomechanism maintaining constant speed. In this way a constant efficiency is achieved in these turbines. The system is costly and where constant load conditions prevail, the simpler propeller turbines are installed. There are many locations where large flows are available at low head. In such a case the specific speed increases to a higher value. In such situations axial flow turbines are gainfully employed. A sectional view of a kaplan turbines in shown in figure. These turbines are suited for head in the range $5-80 \mathrm{~m}$ and specific speeds in the range 350 to 900 . The water from supply pipes enters the spiral casing as in the case of Francis turbine. Guide blades direct the water into
the chamber above the blades at the proper direction. The speed governor in this case acts on the guide blades and rotates them as per load requirements.

The flow rate is changed without any change in head. The water directed by the guide blades enters the runner which has much fewer blades (3 to 10) than the Francis turbine. The blades are also rotated by the governor to change the inlet blade angle as per the flow direction from the guide blades, so that entry is without shock. As the head is low, many times the draft tube may have to be elbow type. The important dimensions are the diameter and the boss diameter which will vary with the chosen speed. At lower specific speeds the boss diameter may be higher.
The number of blades depends on the head available and varies from 3 to 10 for heads from 5 to 70 m . As the peripheral speed varies along the radius (proportional to the radius) the blade inlet angle should also vary with the radius. Hence twisted type or Airfoil blade section has to be used. The speed ratio is calculated on the basis of the tip speed as $\emptyset=\frac{u}{\sqrt{2 g H}}$ and varies from 1.5 to
2.4. The flow ratio lies in the range 0.35 to 0.75 .

Sectional view of Kaplan turbine

Velocity triangles

(a) At Tip

(b) At Hub

PART-C

1. The head available at a location was 1500 m . It is proposed to use a generator to run at $\mathbf{7 5 0} \mathbf{~ r p m}$. The power available is estimated at $\mathbf{2 0 , 0 0 0}$ kW . Investigate whether a single jet unit will be suitable. Estimate the number of jets and their diameter. Determine the mean diameter of the runner and the number of buckets.

Solution:
The specific speed is calculated to determine the number of jets,

$$
\begin{aligned}
& N_{S}=\frac{750}{60} \frac{\sqrt{20,000 \times 10^{3}}}{1500^{8 / 4}} \\
& N_{S}=5.99
\end{aligned}
$$

So a single jet will be suitable.
The overall efficiency is assunsed as 0.87 .

$$
\begin{aligned}
& 20,000 \times 10^{3}=0.87 \times Q \times 1000 \times 9.81 \times 1500 \\
& \Rightarrow Q=1.56225 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

To determine the jet velocity, the value of C_{V} is required. It is assumed as 0.97 .

$$
\begin{aligned}
V & =0.97 \sqrt{29 H} \\
& =0.97 \sqrt{2 \times 9.81 \times 1500} \\
V & =166.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\text { We know, } \begin{aligned}
Q & =A \cdot V \\
1.56225 & =\frac{\pi}{4} d^{2} \times 166.4 \\
\Rightarrow d & =0.1093 \mathrm{~m}
\end{aligned}
$$

Assume, $\phi=0.46$

$$
u=166.4 \times 0.46
$$

$$
\text { Also, } u=\frac{\pi+D N}{60}
$$

$$
\begin{aligned}
\Rightarrow D & =\frac{604}{\pi N} \\
& =\frac{60 \times 166.4 \times 0.46}{\pi \times 750}
\end{aligned}
$$

$$
D=1.95 \mathrm{~m}
$$

$$
\begin{aligned}
\text { Number of buckets, } & =z \cdot \frac{D}{2 d}+15 \\
& =\frac{1.95}{2 \times 0.1093}+15 \\
& =24
\end{aligned}
$$

2. At a location selected to install a hydroelectric plant, the head is estimated as 550 m . The flow rate was determined as $20 \mathrm{~m} \mathrm{3m} / \mathrm{s}$. The plant is located at a distance of 2 m from the entry to the penstock pipes along the pipes. Two pipes of $\mathbf{2} \mathbf{m}$ diameter are proposed with a friction factor of $\mathbf{0 . 0 2 9}$. Additional losses
amount to about $\mathbf{1 / 4 t h}$ of frictional loss. Assuming an overall efficiency of $\mathbf{8 7 \%}$, determine how much single jet unit running at 300 rpm will be required.

Solution:
Specific speed
Net bead = Head available - loss in head

$$
\begin{aligned}
\text { Friction Loss } & =\frac{f L V_{p}{ }^{2}}{2 g D} \\
Q & =V_{p} \times A_{p} \times \text { number of pipes } \\
Q & =20 \mathrm{~m}^{3} / \mathrm{s} \quad \text { (given). } \\
\Rightarrow V_{p} & =\frac{20}{\left(\frac{\pi}{4} \times 2^{2}\right) \times 2}=3.183 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& V_{p}=3.183 \mathrm{~m} / \mathrm{s} \\
& L=2000 \mathrm{~m}, f=0.029 \\
& h_{f}=\frac{0.029 \times 2000 \times 3.183}{2 \times 9.81 \times 2}
\end{aligned}
$$

$$
h_{f}=14.98 \mathrm{~m} .
$$

Total

$$
\begin{aligned}
\text { loss of head } & =\left(1-\frac{1}{4}\right) \times 14.98 \\
& =\frac{5}{4} \times 4.98 \\
& =18.72 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Net head } & =550-18.72 \\
& =531.28 \mathrm{~m}
\end{aligned}
$$

\therefore Power, $P=\eta Q$ eg h

$$
\begin{aligned}
& P=\eta Q e g H \\
& P=0.87 \times 20 \times 1000 \times 9.81 \times 531.28 \\
& P=90.6863 \times 10^{3} \mathrm{~W}
\end{aligned}
$$

specific speed, $\begin{aligned} N_{S} & =\frac{300}{60} \cdot \frac{\sqrt{90.686 \times 10^{3}}}{531.2844} \\ N_{s} & =18.667\end{aligned}$

$$
N_{s}=18.667
$$

Suitability of single jet unit

$$
\begin{aligned}
V_{j} & =C_{v} \sqrt{2 g H} \\
& =0.98 \sqrt{2 \times 9.81 \times 531.28}
\end{aligned}
$$

Velocity of $\}, V_{j}=100.05 \mathrm{~m} / \mathrm{s}$
jet $\}$.
Discharge,

$$
\begin{aligned}
Q & =A \cdot V_{j} \\
& =\frac{\pi}{4} d^{2} \times V_{j} \\
d & =\left(\frac{4 Q}{\pi V_{j}}\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& d=\left(\frac{4 \times 20}{\pi \times 100.05}\right)^{1 / 2} \\
& d=0.5 \mathrm{~m} \text { (high) }
\end{aligned}
$$

Also,

$$
\begin{aligned}
\frac{\pi D N}{60} & =0.46 \times 100.05 \\
D & =2.93 \mathrm{~m} \\
\text { Jet speed ratio } & =\frac{2.95}{0.5} \\
& =6(10 \mathrm{w})
\end{aligned}
$$

If $16 \overline{n e e}$ jets are suggested,

$$
\text { then } d=0.29 \mathrm{~m}
$$

Jet speed ratio $=10$ (Suitable).

$$
\begin{aligned}
\therefore \quad N_{S} & =\frac{300}{60} \frac{\sqrt{90.6863 \times 10^{6} / 3}}{531.28514} \\
N_{s} & =10.77
\end{aligned}
$$

Hence a three jet unit can be suggested.

UNIVERSITY QUESTION PAPERS

1. CE 6451-APRIL/MAY 2017

Reg. No. : \square

Question Paper Code : 71563

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Third/Fourth Semester
Mechanical Engineering
CE 6451 - FLUID MECHANICS AND MACHINERY
(Common to Aeronautical Engineering, Automobile Engineering, Industrial Engineering, Industrial Engineering and Management, Manufacturing Engineering, Mechanical and Automation Engineering, Mechatronics Engineering, Production Engineering)
(Regulations 2013)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A $-(10 \times 2=20 \mathrm{marks})$

1. Define Viscosity and what is the effect due to temperature on liquid and gases.
2. Calculate the height of capillary rise for water in a glass tube of diameter 1 mm ?
3. What are equivalent pipes? Mention the equation used for it.
4. Define Boundary Layer.
5. Explain the types of Similarities.
6. Write the expression for Mach number and state its application.
7. Explain the purpose of Air Vessel and in which pump it is used?
8. Define cavitation and its effects.
9. How do you classify turbines based on flow direction and working medium?
10. What is meant by Governing of Turbines?

PART B - $(5 \times 13=65$ marks $)$
11. (a) (i) Calculate the dynamic viscosity of an oil, which is used for lubrication between a square plate of size $0.8 \mathrm{~m} \times 0.8 \mathrm{~m}$ in an inclined plane with an angle of inclination 30° to the horizontal. The weight of the square plate is 300 N and it slides down the inclined plane with a uniform velocity of $0.3 \mathrm{~m} / \mathrm{s}$. The thickness of oil film is 1.5 mm .
(ii) An oil of specific gravity 0.8 is flowing through a venturimeter having inlet diameter 20 cm and throat diameter 10 cm . The oil-mercury differential manometer shows a reading of 25 cm . Calculate the discharge of oil through the horizontal venturimeter. Take $\mathrm{C}_{\mathrm{d}}=0.98$.

Or

(b) Derive the expression of Bernoulli's equation from the Euler's equation and state the assumptions made for such a derivation?
12. (a) (i) A fluid of viscosity 0.7 Pa .s and specific gravity 1.3 is flowing through a pipe diameter 120 mm . The maximum shear stress at the pipe value is $205.2 \mathrm{~N} / \mathrm{m}^{2}$. Determine the pressure gradient, Reynolds number and average velocity?
(ii) A crude oil of kinematic viscosity 0.4 strokes is flowing through a pipe of diameter 300 mm at the rate of 300 litres per sec. Find the head lost due to friction for a length of 50 m of the pipe. Take Coefficient of friction as 0.006 .

Or
(b) For a flow of viscous fluid flowing through a circular pipe under laminar flow conditions show that the velocity distribution is a parabola. And also show that the average velocity is half of the maximum velocity.
13. (a) A 1:100 model is used for model testing of ship. The model is tested in wind tunnel. The length of ship is 400 m . The velocity of air in the wind tunnel around the model is $25 \mathrm{~m} / \mathrm{s}$ and the resistance is 55 N . Determine the length of model. Also find the velocity of ship as well as resistance developed. Take density of air and sea water as $1.24 \mathrm{~kg} / \mathrm{m}^{3}$ and $1030 \mathrm{~kg} / \mathrm{m}^{3}$. The kinematic viscosity of air and seawater are 0.018 stokes and 0.012 stokes respectively.

Or

(b) Using Buckingham's π theorem, show that the velocity through a circular orifice is given by $V=\sqrt{2 g H \phi}\left[\frac{D}{H}, \frac{\mu}{\rho v H}\right]$, where H is the head causing flow, D is the diameter of the orifice, μ is coefficient of viscosity, ρ is the mass density and g is the acceleration due to gravity.
14. (a) (i) A Single acting reciprocating pump running at 50 RPM delivers $0.01 \mathrm{~m}^{3} / \mathrm{s}$ of water. The diameter of the piston is 200 mm and stroke length 400 mm . Determine
(1) The theoretical discharge of the pump
(2) Coefficient of discharge
(3) Slip and Percentage slip of the pump.
(ii) Discuss the working of Gear pump using its schematic.

Or
(b) A Centrifugal pump having outer diameter equal to two times the inner diameter and running at 1000 rpm works against a head of 40 m . The velocity of flow through the impeller is constant and equal to $2.5 \mathrm{~m} / \mathrm{s}$. The vanes are set back at angle of 40° at outlet. If the outer diameter of the impeller is 500 mm \& width at outlet is 50 mm determine (i) Vane angle at inlet, (ii) Manometric efficiency, (iii) Workdone by impeller on water per second.
15. (a) (i) A kaplan turbine runner is to be designed to develop 9100 kW . The net available head is 5.6 m . If the speed ratio $=2.09$, flow ratio $=0.68$, overall efficiency $=86 \%$ and the diameter of the boss is $1 / 3$ the diameter of the runner. Find the diameter of the runner, its speed and the specific speed of the turbine?
(ii) Explain the Performance Characteristics curves of turbine.

Or

(b) The following data is given for a Francis turbine. Net head $H=60 \mathrm{~m}$, Speed N $=700$ RPM, Shaft power 294.3 kw , Overall efficiency 84%, Hydraulic efficiency 93%. Flow ratio $=0.2$, breadth ratio $\mathrm{n}=0.1$, Outer diameter of the runner is two times inner diameter of the runner. The thickness of vanes occupies 5% of circumference area of the runner. Velocity of flow is constant at inlet and outlet and the discharge is radial at outlet. Determine (i) Guide blade angle, (ii) Runner vane angle at inlet and outlet, (iii) Diameter of runner inlet and outlet, (iv) Width of wheel at inlet.

$$
\begin{equation*}
\text { PART C }-(1 \times 15=15 \text { marks }) \tag{13}
\end{equation*}
$$

16. (a) A liquid has a specific gravity of 0.72 . Find its density, specific weight and its weight per litre of the liquid. If the above liquid is used as the lubrication between the shaft and the sleeve of length 100 mm . Determine the power lost in the bearing, where the diameter of the shaft is 0.5 m and the thickness of the liquid film between the shaft and the sleeve is 1 mm . Take the viscosity of fluid as $0.5 \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}$ and the speed of the shaft rotates at 200 rpm .
(b) For a high head storage capacity dam of net head 800 m , it has been decided to design and install a Pelton wheel for generating power of $13,250 \mathrm{kw}$ running at a speed of 600 RPM , if the coefficient of jet is 0.97 Speed Ratio $=0.46$ and the Ratio of jet diameter is $1 / 15$ of the wheel diameter calculate (i) Number of jets, (ii) Diameter of jets, (iii) Diameter of Pelton wheel, (iv) No of buckets and (v) Discharge of one jet.
